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ABSTRACT 

Purpose 
To investigate the efficiency of a discretization procedure utilizing a time-indexed mathe-

matical optimization model for finding accurate solutions to flexible job shop scheduling 

problems considering objectives comprising makespan and tardiness, respectively. 

Design/methodology/approach 

A time-indexed mixed integer programming model is used to find solutions by iteratively 

employing time steps of decreasing length. The solutions and computation times are 

compared with results from a known benchmark formulation and an alternative model.   

Findings 

The proposed method finds significantly better solutions for the largest instances within the 

same time frame. Both the other models are better choices for some smaller instances, 

which is expected since the new method is designed for larger problems. Only our alter-

native model is able to solve two of the largest instances when minimizing the tardiness. 

Research limitations/implications 
Interesting future research topics include the introduction of constraints representing other 

relevant entities such as the availability of tools and fixtures, and the scheduling of 

maintenance activities and personnel. 

Practical implications 
Real cases of flexible job shop problems typically yield very large models. Since the new 

procedure quickly finds solutions of good quality to such instances, our findings imply that 

the new procedure is beneficially utilized for scheduling real flexible job shops. 

Original/value 
We show that real flexible job shop problems can be solved through the solution of a series 

of carefully formulated discretized mathematical optimization models. 

Keywords: Flexible job shop scheduling, Linear integer optimization, Linear mixed integer 

programming, Discretization procedure, Benchmarking, Minimize makespan, Tardiness. 
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1. INTRODUCTION 

The job shop scheduling problem is defined as that to find the optimal sequences of a given 

set of jobs on a given set of machines. Each job consists of a number of operations which 

must be processed in a given order, modeled by so-called precedence constraints. Associated 

with each operation is a machine and a processing time. The flexible job shop problem (FJSP) 

is an extension of the job shop problem in which each operation may be scheduled in more 

than one of the machines (Brucker and Knust, 2012, see Chapter 4). 

The purpose of this article is to investigate the competitiveness of an iterative discretization 

procedure utilizing a time-indexed mixed integer linear programming (MILP) model in fin-

ding accurate solutions to flexible job shop scheduling problems. The MILP models include 

both binary and continuous variables, and all the relations between the variables in the 

objective and constraints are linear; see Nemhauser and Wolsey (1988). Our iterative solution 

procedure is compared with a benchmark model presented by Özgüven et al. (2010), which 

yielded the best results in the evaluation by Demir and İşleyen (2013). In the comparison we 

have also included a similar alternative model developed during the work with this article.  

2. RELATED WORK 

In Manne (1960), the problem of sequencing jobs with precedence constraints on a single 

machine is studied. The jobs’ starting times are represented by continuous variables, and the 

decision variables are defined as yjq equals 1, if job j precedes job q, and 0 otherwise. In the 

operations research literature, there are many examples of models for job shops and flexible 

job shops employing this type of variables; see, e.g., Özgüven et al. (2010) and Fattahi et al. 

(2007). 

An alternative means to formulating a MILP model for the flexible job shop problem is to 

utilize discrete time-indexed variables. The planning period is then divided into a number of 

time periods of equal length. The decision variables used in this article are valued 1 if the 

corresponding operation is scheduled to start at the beginning of a specific time period in a 

specific resource, and 0 otherwise. The resulting formulation results in very large models in 

terms of numbers of both variables and constraints, but it typically yields better optimistic 

estimates of the optimal objective value (see Section 3.2) than other MILP formulations of 

scheduling problems; see van den Akker et al. (2000).  In Berghman (2012), a time-indexed 

formulation outperformed three other MILP models for the problem of parallel machine 

scheduling when the objective was to minimize the total weighted completion times. We ob-

tained a similar result for a special case of the FJSP in a real production cell with the objective 

of minimizing a weighted sum of the completion times and tardiness (Thörnblad, 2011). 

The objective that is the most often utilized for scheduling problems is the minimization of 

the makespan (Jain and Meeran, 1999). Other common objectives are related to the jobs’ 

earliness/tardiness and completion times, and/or inventory holding costs associated with the 

jobs. Out of the 22 articles listed by Demir and İşleyen (2013) which present mathematical 

models (some of the models being non-linear) concerning the FJSP, 16 considered the 

objective of minimizing the makespan; only ten considered other objectives, whereof five 

involving due dates. See Section 4 for a discussion of the makespan objective and an 

objective including tardiness and their respective suitability for real applications. 

Besides MILP, there are many methods devoted to finding good feasible solutions to 

scheduling problems. Constraint programming is an exact method, which seems to yield good 
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results, see e.g. Sadykov and Wolsey (2006) for an evaluation of MILP and constraint prog-

ramming models for solving a so-called multimachine assignment scheduling problem. There 

are many so-called metaheuristics proposed for flexible job shop scheduling problems, such 

as simulated annealing, tabu search, and genetic algorithms amongst others, and combinations 

of these; see, e.g., Wang et al. (2012), Al-Hinai and ElMekkawy (2011), and Baykasoglu and 

Özbakir (2010). In Section 6, we compare the makespan found by our models with those 

found by Behnke and Geiger (2012) and Bagheri et al. (2010), who employ constraint 

programming and an artificial immune algorithm, respectively. 

3. MATHEMATICAL FORMULATIONS 

3.1. Indices, sets, and parameters 

The notation used throughout this article is as follows: 

 

Sets 

  the set of jobs ( {1, , })j n   

j
  the set of operations ( {1, , })j ji n   

  the set of resources ( {1, , })k m   

ij
  the set of resources allowed for operation i of job j ( ,  , ij ji j ) 

  the set of time steps ( {0, , })u T   

 

Parameters 

ijkp   the processing time of operation i of job j in resource k  

ijr   the release date of operation i of job j, i.e., its earliest possible starting time 

ij   the shortest possible remaining time from the starting time of operation i of job j to the 

completion of job j 

  the length of a time step in the time-indexed model 

M   a big number, at least as big as the makespan of the solution to be computed  

           

In all test instances considered in this article, the parts to be processed are assumed to be 

present in the job shop at time step 0, i.e., the job release dates are 1 0jr . Due to the 

precedence relations between the operations within a job, no operation can be scheduled 

before the completion of the previous operation. Therefore, and since the processing time is 

resource dependent, the release date is defined as 
1

1
: min { },

j

i

ij k j kr p  for 

2, , , ji n j . Likewise, : min { },
j

j

n

ij k j ki
p  for , ji j . 

3.2. The time-indexed model 

The planning horizon is divided into 1T  intervals, each of length . The value of the 

parameter T  has to be large enough such that an optimal schedule is contained within the 

time horizon [0,( 1) ]T . Our time-indexed model is expressed in terms of the variables ijkux , 

which are valued 1 if operation i  of job j  is scheduled to start processing in resource k  at 

the start of time interval u, and 0 otherwise. Throughout the article, for any z  we define 

( ) : max{ ,0}z z . We first consider the objective of minimizing the makespan of the 
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schedule, represented by the variable maxC ; in Section 4 we present an alternative object-

tive based on the total (weighted) tardiness. The model is thus to 

 

 

 
 

The constraints (1b) ensure that each operation i of job j is scheduled to be processed exactly 

once in an allowed resource. The constraints (1c) set all variables corresponding to an 

operation to zero for the set of resources in which the operation is not allowed to be 

processed; these constraints are redundant, but they are included since we discovered that the 

solver was able to parallelize the computations such that they run faster (w.r.t. clocktime) 

when these constraints were included. The constraints (1d) ensure that at most one operation 

at a time is scheduled in each resource. The precedence constraints (1e) make sure that no 

operation starts processing before the preceding operation of the same job is completed. The 

makespan of the schedule is determined by the constraints (1f). The constraints (1g) ensure 

that operation i of job j is scheduled neither before its release date nor such that it (or any 

succeeding operations) would not be completed by the end of time interval T . The constraints 

(1g) are redundant, but their inclusion reduces the number of variables in the model. The 

model (1) will henceforth be referred to as model TI-Cmax. 

The number of precedence constraints (1e) is in the order of the total number of operations 

times the total number of time steps. If an instance of the model is too large, such that the 

time to solve the linear relaxation is too long for practical purposes, then an alternative set of 

precedence constraints may be used:  

         
1,

1, 1,

1, , ,( ) ,  1, , 1,  .
ij i j

ij ij i j i j

T T

ijk ijk i j l j

k r l r

p x x i n j   (2) 

The linear relaxation (or LP-relaxation) of TI-Cmax is a model with the same objective and 

constraints, except for the integrality constraints (1h) which are substituted by 0 1,ijkux  

,ji , ,j k u . The optimal objective value of the linear relaxation of a model 
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is called its LP bound; it is a lower bound on the optimal objective value of the original model 

including integrality constraints. Provided that the constraints (1h) are fulfilled, the 

constraints (2) are equivalent to (1e); they do, however, not yield as tight LP bounds as do the 

constraints (1e). The model (1a)–(1d), (2), (1f)–(1h) will henceforth be referred to as TI-prec-

Cmax. In Table 3.1 we present the results for one test instance regarding the differences in the 

LP bounds of the models TI-Cmax and TI-prec-Cmax. 

3.3. An alternative model 

We next present an alternative model that we have developed, employing the same type of 

variables as the benchmark model proposed by Özgüven et al. (2010). Our model requires 

fewer variables and constraints than the benchmark model, since the variables for the 

completion times of operations and jobs used in the latter model are redundant. The variables 

used in our formulation of the alternative model are 

 

   ijkz  1, if operation i of job j is processed on resource k; 0, otherwise, 

ijpqky  1, if operation i of job j precedes operation p of job q in resource k; 0, otherwise, 

    
ijkt  the starting time of operation i of job j in resource k, and 

 maxC  the maximum completion time over all the jobs (makespan). 

 

Our alternative model, Alt-Cmax, is then formulated as that to 

 

 

 
 

The constraints (3b) ensure that each operation is scheduled in exactly one resource. If an 

operation is not scheduled in a resource k , then its starting time in this resource is set to zero 

by the constraints (3c). The constraints (3d) and (3e) make sure that no two operations are 
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processed at the same time in any common allowed resource. The constraints (3f) ensure that 

the precedence relations between the operations of the same job are not violated. The 

constraints (3g) determine the makespan of the schedule. Finally, the constraints (3h)–(3j) are 

the nonnegativity and binary constraints on the variables. 

In Table 3.1 the objective values of the solutions to the LP-relaxation of the models TI-Cmax, 

TI-prec-Cmax, and Alt-Cmax for the benchmark instance mfjs7 (Fattahi et al., 2007), are 

listed. The significance of the tightness of the precedence constraints (1e) is clear for this 

instance, but the price of the better result is paid for by the longer computation time. 

 

Table 3.1. The objective values and computation times for the solution of LP relaxation of the 

models for the benchmark test instance mfjs7 (Fattahi et al., 2007). 

Model Optimal  

objective value 

Objective value 

of LP relaxation 

Comp. time for solving the 

LP relaxation (CPU-s) 

TI-Cmax 

TI-prec-Cmax 

Alt-Cmax 

879 

879 

879 

773.43 

765.73 

764.00 

               1430 

                    80 

                      0.01 

 

3.4. Relations between the two models 

The model TI-Cmax is equivalent to Alt-Cmax for the case when all instance data are 

multiples of the discretization interval ,  in the sense that they define equivalent sets of 

feasible and optimal solutions, respectively. The variables of Alt-Cmax and TI-Cmax are 

related according to 

,   ,   ,   ,   ,ijk ijku ijk ijku ij j

u u

z x t ux k i j         (4a) 

1, if 0 ,
  , , , , , ,

0, otherwise,

ijku pqku

u u
ijpqk ij pq j q

ux ux
y k i p j q j q   (4b)  

and 

, if ,
, , .

0, if { }

ijk ijk

ijku j

ijk

z u t
x i j k

u t
                 (4c) 

The constraints (1b) are, through the definitions in (4), equivalent to the constraints (3b). 

Similarly, the constraints (1d) correspond to (3d)–(3e). As stated in Section 3.2, the 

precedence constraints (1e) are equivalent (in an integer programming sense) to (2), which are 

equivalent to (3f). The constraints (3c) are required in order to define the variables ijkt  for the 

model Alt-Cmax. 

4. TARDINESS VERSUS MAKESPAN 

The objective most often considered in the studies of (flexible) job shop problems is the 

minimization of the makespan. According to the survey (Jain and Meeran, 1999), the reason is 

that this criterion was the first objective applied by researchers studying scheduling problems 

in the early 1950s and that it is easily modelled. 
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In previous work (Thörnblad et al., 2013) we have studied a real flexible job shop being a part 

of a longer supply chain, in which a variety of aerospace components are processed. In such a 

context, the production must be predictable and according to plan, since subsequent opera-

tions – as well as customers – normally require incoming material at a planned and steady 

pace in order to be efficient. An objective that strives to minimize the tardiness with respect to 

the due dates (
jd ) for the respective jobs, will thus serve to control the flow and stabilize its 

pace (i.e., takt time). This setting is not specific for the flexible job shop studied in this article, 

but is present in many job shops in the manufacturing industry. The objective function (5) 

proposed below, targeting mainly the due dates, will also enable shorter production lead 

times, since if all jobs can be processed in due time, the objective equals the minimization of 

the weighted sum of the completion times. However, if the scheduling procedure is capable of 

repeatedly schedule the job shop with no tardy jobs, then the planner has the opportunity of 

setting more challenging due dates, which in turn will shorten even the planned production 

lead times. If the objective function targets the makespan, there is a risk that the scheduling 

algorithm exacerbates an already unreliable flow – instead of performing the opposite. 

In Thörnblad (2011) we studied an objective whose main focus is the minimization of the 

total weighted tardiness. Since instances with no tardy jobs may very well occur in the real 

world, we chose to include the sum of the completion times in the objective, in order to 

produce good schedules also for these scenarios. The objective was hence formulated as to 

minimize    ( )j j j j

j

a C b T ,           (5) 

where 
jC  and ( )j j jT C d  denote the completion time and the tardiness of a job, respect-

tively, and 
ja  and 

jb  are positive weight parameters. Note that the makespan and the 

completion times are related through 
max max { }j jC C .The models TI-Cmax and Alt-Cmax 

need to be altered in order to consider this objective. Since the completion time of a job in 

TI-Cmax can be expressed as 

( )
j jj n jk n jku

k u

C u p x ,          (6) 

the objective (5) can be rewritten for TI-Cmax as that to 

minimize   ( ) ( )( )
j j jj n jk j n jk j n jku

j k u

a u p b u p d x .       (7) 

Note that the operator ( )  in this objective is applied only to parameters, and hence the object-

tive remains linear. As the release dates are already considered in TI-Cmax, no other changes 

than removing the constraints (1f), which define the makespan, are needed in this model in 

order to consider the objective (7). The model (7), (1a)–(1e), (1g)–(1h) will henceforth be 

referred to as model TI-Tard. 

In order to prioritize the jobs that are the most delayed in the schedule resulting from our 

mathematical model, we define the tardiness weights, jb , according to  

: 1 , ,
max {| |}

j

j

j j

d
b B j

d
          (8) 

where B > 0 denotes the weight employed for the jobs having due date 0, such that 

0 2jb B  hold for all .j  In this way, the jobs that are most delayed are assigned the 
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highest tardiness weights. Since the main objective is to minimize the tardiness, the objective 

weights for the completion time, ,ja  must be chosen such that 0 ,   ,ja B j  holds.  

In order to adjust Alt-Cmax to consider the tardiness objective with a preserved linearity, the 

tardiness variables Tj need to be included. The objective can then be formulated as that to 

minimize   ( )
j j j

n jj

j n jk n jk n jk j j

j k

a t p z b T .       (9) 

The following constraints are added to the model Alt-Cmax in order to include the release 

dates and to define the tardiness: 

 

   , , , ,ij ijk ijk ij jr z t k i j    (10a) 

 

    ( ) ,    
j j j

n jj

n jk n jk n jk j j

k

t p z d T j ,      (10b) 

      0,      .jT j       (10c) 

The alternative model with the proposed tardiness objective is thus formulated as that to 

minimize (9) subject to (3b)–(3f), (3h)–(3i), (11), and will henceforth be referred to as the 

model Alt-Tard. 

5. THE ITERATIVE SOLUTION PROCEDURE 

The major disadvantage of the time-indexed model is that the size of the model grows fast 

with the total number of time steps. We have developed a solution procedure that solves the 

time-indexed model for iteratively smaller time steps, i.e., with increasingly better accuracy. 

In this procedure, the schedule resulting from one iteration of the procedure is transformed 

into a feasible starting solution for the next iteration by a squeezing procedure. The resulting 

makespan is used to determine the length of the next time horizon in order to keep the total 

number of time steps required for the model in each iteration of the procedure as small as 

possible. In Section 5.1 we describe the squeezing procedure; in Section 5.2 the details of the 

iterative procedure are described. 

5.1. The squeezing procedure 

The processing times and release dates for a given iteration are rounded up to multiples of the 

chosen length of the time step. In the order of increasing starting times for the best solution 

obtained in the previous iteration, the starting time of each operation is recalculated such that 

it is scheduled as early as possible, without violating any precedence or release date 

constraints. In the example illustrated in Figure 5.1, the completion time of operation i of job j 

constrains the starting time of operation p of job q, when the time steps are large; for short 

time steps, the squeezing procedure schedules the start of operation p of job q at its release 

date, pqr . 
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Figure 5.1 The output of the time-indexed model from one iteration is squeezed into a feasible 

solution for the next iteration, having shorter time steps. 

Since the squeezing procedure retains the ordering of the operations on each resource, and all 

precedence and release dates’ constraints are considered by the squeezing procedure, the 

resulting schedule represents a feasible solution to the scheduling problem defined with the 

shorter time steps. The makespan of the schedule obtained by the squeezing procedure applied 

to the solution from the previous iteration is used as the time horizon for the next iteration, 

when the objective is to minimize the makespan. When minimizing the tardiness objective 

(7), the value assigned to the next time horizon equals the sum of the largest processing time 

and the makespan obtained by the squeezing procedure, since a smaller value of the objective 

function may correspond to a larger makespan. 

5.2. The iterative procedure 

For the first iteration of the procedure, we need to assign a suitable value to the length of the 

time step (time horizon), here denoted 1 ( 1T ) for the first iteration, and s ( sT ) for iteration s. 

In order to determine a value for 1 , we estimate the total number, V , of variables required 

for the smallest time step  that we wish to use in the last iteration as 

: ( )( )
j

ij jj i j
V p n , where 

1: | |
ij

ij ij ijkk
p p  is the average processing 

time over all resources in the set 
ij

. The threshold values of V  used to determine 1  for the 

computations described in Section 6 are listed in Table 5.1. In our computations, 1T  is 

determined using a heuristic similar to that described in Thörnblad (2011, p. 35). The 

heuristic finds a feasible schedule, assigning the operations by order of increasing release 

dates in an allowed and available resource; 1T is assigned the value of the makespan of this 

schedule expressed in number of time intervals of length 1 . 

 

Table 5.1. The threshold values of V used to determine 1 (the time step for the first iteration). 

V  is the estimated total number of variables required for the smallest desired length of the 

time step. The median of the processing times is denoted by p . 

0 < V < 10 000 10 000 ≤ V < 50 000 50 000 ≤ V < 100 000 100 000 ≤ V < 500 000 500 000 ≤ V 

1 1   1 1

8
p  1 1

4
p  1 1

2
p  

1 p  

        

Once the value of 1  is determined, the input data for the first iteration is created. The values 

of the parameters are scaled and rounded, according to 

: ,   : ,   : ,   ,   ,   ,
ijk ij j

ijk ij j js s s

p r d
p r d i j k      (11)
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where ~ denotes the original parameter values, and 1s  for the first iteration. The iterative 

procedure employed for solving a time-indexed model is described in Algorithm 1. It is 

initialized by letting the model (P) be TI-Cmax or TI-Tard, determined by the objective 

considered, and by assigning a large enough number to bestw , being an upper bound on the 

value of the best solution found so far. The input data needed by the model (P) is denoted 

datfile in the algorithm. 

 

Algorithm 1 Iterative_procedure(datfile, 1 , 1T , (P), bestw , ) 

While ( )i  do 

Solve model (P); 

Squeeze the resulting schedule using original data; 
sw  the objective value of the squeezed schedule; 

If s bestw w  then best sw w ; Store the corresponding solution, bestx ; End if 

1s s ; 

Update s ; 

Squeeze the best solution, bestx , using data defined by (11); 

Compute sT ; 

Generate a datfile with the best solution found as starting solution; 

If (P) = TI-Cmax and root root

maxt t   then (P)  TI-prec-Cmax; End if 

End while 

 

In Algorithm 1, a new value of s  for iteration s is determined by the statement “Update s ”. 

When considering the minimization of the makespan, the algorithm was terminated either 

after (i) the third feasible solution was found (cplex option solutionlim = 3), or (ii) the mipgap 

was less than a pre-specified number, or (iii) a pre-specified time limit was exceeded. The 

mipgap of a problem instance is defined as 

 

LB
: ·100%,

LB

z
mipgap  

 

where z denotes the objective value of the best feasible solution and LB denotes the best 

lower bound found by the optimization solver during the computations. If the computations 

were stopped due to the condition (i), then s s-1: , otherwise, 
1: ( / )s sround , where 

1 . In the computations we employed 1.8 . Choosing 2  might result in an 

unfavourable data pattern in the rounding of parameters in (11). Further, in order to reduce the 

total number of iterations, we let 1s  when 1 / 5s . The reason for this is that we 

found in the tests that the best solution is most often obtained for larger values of , and the 

last iteration, with  1s , is most often used to establish optimality (or compute a mipgap) 

rather than to find better feasible solutions. 

The value sT  of the time horizon is updated in the iterative procedure as described in 

Section 5.1. For some of the largest instances, the CPU time, roott , required to solve the root 

relaxation (which is essentially the time to solve the LP-relaxation) exceeded the time limit. 

Therefore, the model TI-prec-Cmax was chosen if the value of roott  exceeded a threshold root

maxt  

in the previous iteration. In the computational testing, root

maxt = 1 CPU-second. For the model 
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TI-Tard, the precedence constraints (1e) were employed in all iterations since they yielded 

smaller mipgaps and shorter computation times. 

6. COMPUTATIONAL RESULTS 

As mentioned in Section 3.3, we have chosen to compare the models by solving the twelve 

largest benchmark test instances in Fattahi et al. (2007). We have omitted the eight smallest 

instances out of the original 20, since they can be computed in just a few seconds and are thus 

not that interesting for comparison. All these test instances are available through Behnke and 

Geiger (2012), along with other instances for the flexible job shop problem. The chosen 

instances range from 3, 3, 3,jn m n  for the smallest instance sfjs9 to 12, 8,n m  

4,jn  for the largest instance mfjs10. 

The models compared are the time-indexed models TI-Cmax (TI-prec-Cmax) and TI-Tard 

(implemented through Algorithm 1), the alternative model (Alt-Cmax and Alt-Tard), and a 

benchmark model
1
 developed by Özgüven et al. (2010) (BM-Cmax). This model is closely 

related to the alternative model, which is mentioned in Section 3.3. We also used the 

benchmark model considering the tardiness objective (9), implemented through the 

constraints (10a)–(10c). This model is referred to as BM-Tard; it was chosen to be our 

benchmark model since it yielded the best results in the evaluation by Demir and İşleyen 

(2013). 

The computations were carried out using AMPL-CPLEX 12.1.0 on a computer with two 

2.66 GHz Intel Xeon X5650 processors, each with six cores (24 threads), with a total memory 

of 48 Gbyte of RAM. The time limit for each call of the CPLEX solver from the iterative 

procedure was set to 7200 CPU-seconds. Since the iterative procedure calls the solver once 

per iteration, the total computation time may exceed 7200 CPU-seconds. 

The squeezing procedure and the generation of input data files in each iteration were 

implemented in Matlab. The total running time for this Matlab program was approximately 15 

seconds. Since the running time would only be a fraction of a second if this code was 

optimized and written in, for example, C, the total running time of the iterative procedure was 

calculated as the sum of the computation times used by CPLEX over all iterations of 

Algorithm 1. 

6.1. Test results for the minimization of the makespan 

Since it is only in the last iteration (with s 1) that a lower bound on the optimal objective 

value is guaranteed, and the mipgap is comparable with that of the other models, the iterative 

procedure was run until the last iteration was terminated due to either the computation time 

exceeding the time limit of 7200 seconds, or that the mipgap being less than 0.0005. In order 

to ensure a fair comparison between the models, the time limit for solving BM-Cmax and Alt-

Cmax was set to the total CPU-time needed by the iterative procedure; see Table 6.1, where 

the results for the seven largest instances, mfjs4–10, are presented. All the smaller instances, 

                                                 
1
 We implemented the benchmark model as it is formulated in Özgüven et al. (2010), but for a possible typo 

mistake: In the precedence constraints regarding the operations of the same job, the sum over the completion 

times for operation i – 1 should, using our notation, be over k 
1,i j

; this is unclear in Özgüven et al. (2010, 

see the constraints (6), p. 1542). This mistake is also present in Demir and İşleyen (2013), where the benchmark 

model is presented. In this article, the constraints corresponding to our constraints (3d) and (3e) are defined for 

all j  q rather than for all j < q. This is not incorrect, but the redundancy implies longer computation times 

(Demir and İşleyen, 2013, see the constraints (2.5)–(2.6), p. 981). 
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namely sfjs9–10, and mfjs1–3, were solved to optimality within 20 CPU-seconds by all three 

models. The time limit was reached before the iterative procedure had established optimality 

for the instances mfjs4 and mfjs6, although the time to find the best feasible solution (“time to 

best”) is competitive with the other models. The computation times used by the iterative 

procedure to verify optimality were in all cases longer than that of the other two models. It 

seems, however, that the Algorithm 1 employing the models TI-Cmax and TI-prec-Cmax 

works well for the four largest instances, mfjs7–10, since the best results were found by this 

iterative procedure, both the value of the best makespan found and the time required finding 

this solution. Our analysis showed that the iterative procedure indeed found the optimal 

solution for mfjs7–8, although optimality was not verified within the time limits. 

 

Table 6.1. Computational results for the largest instances mfjs4–10. The best results in each 

category are written in bold and a * in the mipgap column denotes that optimality is proven. 

 
 

The models BM-Cmax and Alt-Cmax performed equally well, which is not surprising since 

the reduced models, constructed by the solver in the presolve phase, comprised the same 

number of variables for these two models, and BM-Cmax contained only 5% more constraints 

than Alt-Cmax. TI-Cmax, on the other hand, contained 40 times more variables and about 6 

times more constraints than the benchmark model in the reduced problem for 1s . [Note 

that the optimal value for mfjs4 is 554 and not 564, as stated both in Özgüven et al. (2010) 

and in Demir and İşleyen (2013)]. Both Behnke and Geiger (2012), and Bagheri et al. (2010) 

found the makespan of 554 for this instance when applying constraint programming and an 

artificial immune algorithm (AIA), respectively. To our knowledge, these two articles present 

the best results for the Fattahi test instances employing these methods.  

Behnke and Geiger (2012) found and verified the optimal solution for the smaller instances 

sfjs9–10, and mfjs1–3. Within the time limit of 10 minutes of running time, they found the 

same solutions as TI-Cmax for the instances mfjs4–6, mfsj8, and mfjs10. For mfjs7 and mfjs9, 

they found the makespans of 931 and 1070, respectively; hence constraint programming 

produces equally good results as TI-Cmax. We cannot make any comparisons between the 

Algorithm 1 employing model TI-Cmax (TI-prec-Cmax) and the constraint programming 

model by Behnke and Geiger (2012) regarding the computation times, since the tests are not 

run using the same computer.  

Bagheri et al. (2010) propose an AIA for the FJSP. In six out of the twelve benchmark 

instances, the best makespan found after 10 runs of AIA was larger than that found by TI-

Cmax, and in no cases they found a better result. As an example, the best makespan for mfjs9 

and mfjs10 was 1088 and 1267, respectively. One run of AIA is performed in only a few 

CPU-seconds, but as it is a meta-heuristic there is no guarantee that a better result would be 

achieved if it was run repeatedly during the same CPU times as we have used. 
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6.2. Test results for the minimization of the tardiness objective 

In order to compare the models TI-Tard, BM-Tard, and Alt-Tard, we generated due dates for 

all the test instances, since due dates are not given for the original instances by Fattahi et al. 

(2010). Due dates for all jobs were randomly generated in the range [–0.5 maxC ,1.5 maxC ], 

where the value of maxC equals the smallest makespan found for each instance. The choice of 

this range is motivated by our experience from a real flexible job shop, namely that some jobs 

have negative due dates and are hence late already from the start, and some jobs may be 

scheduled with zero tardiness. These instances are denoted by a “d-“ in front of the original 

name of each instance.  

The objective weights for the completion times used in the computations are 1,ja j . 

The tardiness weights ,jb ,j  are computed according to (8), with 10B , such that 

0 20jb , hold for all .j  The largest values are assigned to the objective weights of the 

jobs being the most delayed. 

In Figure 6.1, the computation times required for the three models to solve the test instances 

generated are plotted. For the medium size instances, all models require almost the same 

computation times. As expected, TI-Tard is not competitive for the smallest instances, since it 

is solved in several steps. Only Alt-Tard reaches optimality for the instances d-mfjs7–8. 

 

 
Figure 6.1. The computation times required for solving the models TI-Tard, BM-Tard, and 

Alt-Tard to optimality for the Fattahi test instances including due dates. For some of the 

larger instances optimality was not verified within the time limit of 7200s. 

 

In Table 6.2, the results are listed for the four largest instances. As for the makespan 

objective, the best objective values were found by our iterative procedure. The model TI-Tard 

outperforms the other models regarding the time to find the best solution for all four 

instances, and regarding the mipgap for the instances d-mfjs9–10. 
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Table 6.2. Computational results for the largest instances d-mfjs7–10. The best results in each 

category are written in bold and a * in the mipgap column denotes that optimality is verified. 

 
 

When considering the tardiness objective, the reduced models constructed by the solver in the 

presolve phase contain 19% more constraints and 14% more variables for the BM-Tard model 

compared with the Alt-Tard model. Hence the presolve phase is no longer able to reduce all 

the redundant variables of the BM-Tard model, as was the case for the BM-Cmax model. On 

the other hand, TI-Tard contains 17 times more constraints and 77 times more variables than 

BM-Tard in the reduced problem for 1s . 

7. CONCLUSIONS 

We have noted that there is a large difference in the performance of the scheduling models 

depending on which objective is considered. Hence, it is important to evaluate scheduling 

models with respect to objectives that are well suited for the real applications for which they 

are intended. Since most real flexible job shops are parts of longer supply chains with ongoing 

production, it must be prioritized that production should be predictable and according to plan. 

In Section 4, we argue that an objective targeting due dates will serve to control the flow and 

stabilize its pace, while the objective of minimizing the makespan risk to exacerbate an 

already unreliable flow.  

We have shown that the time-indexed model, combined with the iterative algorithm proposed, 

is able to find significantly better feasible solutions for the largest instances than both the 

alternative model and the benchmark model, considering both objectives studied, despite its 

large number of variables and constraints. The scheduling method proposed outperforms the 

other models regarding the time required to find the best feasible solution. We have also 

presented an alternative model, similar to the benchmark model but with fewer variables and 

constraints. This model is the only one that is able to solve two of the large instances when 

minimizing the tardiness objective. This model is recommended for small and medium size 

instances, since it is solved with only one launch of the optimization solver. It seems, 

however, worthwhile to implement the algorithm proposed for large instances, since it 

typically finds good feasible solutions in an early iteration, employing long time steps; after 

squeezing, these solutions are, actually, often optimal or near-optimal. The verification of 

optimality is, however, typically done in a later iteration. 
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