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Abstract

We present a computational model for developing in-
telligent agents that are able to reason in multiple sym-
bolic domains. The agents have deductive and inductive
reasoning abilities. The deductive mechanism is based
on a simple cognitive model with bounded cognitive re-
sources. The main learning mechanism is a formaliza-
tion of Occam’s razor. Agents constructed in our model
can learn generalized knowledge from concrete exam-
ples. For example, an agent can learn elementary arith-
metic and propositional logic, and then compute correct
answers to previously unseen questions such as “what is
27∗9?” and “is P∨(P→ Q) a tautology?”. We illustrate
the learning process in the case of propositional logic,
where an agent first learns the syntax and then some ba-
sic logical laws. The performance of this agent beats
average human scores in terms of accuracy when tested
on tautologies used in an experiment reported in [16].

Keywords: multi-domain agents, logical reasoning,
propositional logic.

1 Introduction

Artificial Intelligence (AI) is concerned with mathemat-
ical modeling of intelligence. Cognitive science, on the
other hand, focuses on constructing formal models of
human cognition and reasoning. One of the methods
used in cognitive science is cognitive modeling that de-
velops computational models of mental processes and

structures. It is a method for understanding human in-
telligence and can be a valuable tool for AI as well:

“Cognitive modelers attempting to explain
human intelligence share a puzzle with
artificial intelligence researchers aiming to
create computers that exhibit human-level
intelligence: how can a system composed of
relatively unintelligent parts (such as neurons
or transistors) behave intelligently?” [3]

As argued in [3], cognitive modeling and artificial
intelligence can help each other to solve their shared
puzzle. This has been experimented in some recent AI
designs that incorporated simple cognitive models to
achieve human level performance in their relevant do-
mains (e.g., [13, 16]).

Cognitive models can be constructed as standalone
models, or as components within cognitive architec-
tures that are general frameworks to simulate and study
specific mental processes. Many such cognitive ar-
chitectures exist, such as ACT-R [1], Soar [7], and
CHREST [5].

ACT-R is a general cognitive architecture containing
multiple modules that represent different mental struc-
tures (such as memory, vision and speech). The ba-
sic assumption in ACT-R is that memory is divided in
declarative and procedural knowledge.

Soar is a general cognitive architecture that is in-
tended for developing intelligent systems. Though it is
similar to ACT-R, it does not require the cognitive mod-
els to be plausible with respect to human cognition.



Both ACT-R and Soar are based on production sys-
tems and use explicit production rules that are roughly
of the form “if condition then action”.

The working memory (WM) is one of the core com-
ponents in cognitive models of reasoning. The WM
model was first developed by Baddeley and Hitch [2].
WM is a mental workspace and a precious cognitive re-
source with severe restrictions on the number of infor-
mation chunks it can hold at any point in time. Ear-
lier findings suggest its capacity to be between 5 and
9 chunks [10]. WM capacity is highly correlated with
general intelligence (Spearman’s g factor) [6].

Other cognitive resources used in cognitive modeling
include declarative memory, procedural memory, visual
short-term memory, and attention.

Artificial general intelligence (AGI) focuses on the
“general” intelligence as opposed to traditional AI that
aims at more specific applications of intelligence [18].
Cognitive modeling is a commonly used method in AGI
systems. Research in AGI designs has utilized many
cognitive architectures, e.g., ACT-R [11], CHREST [8]
and Sigma [12]. New cognitive architectures have also
been proposed [17].

Occam’s razor is a simple scientific principle that ex-
presses a preference for the simplest solution to a prob-
lem. Mathematical formulations of Occam’s razor in-
clude Solomonoff complexity, Kolmogorov complexity,
and also Levin complexity [9].

The work presented in this paper builds upon our ear-
lier models of deductive reasoning [13, 16, 4] and in-
ductive reasoning [15]. Our objective is to develop a
unified design for inductive and deductive reasoning in
symbolic domains. We use the same formal design as in
[14] (which uses the example of arithmetic), and apply
it to the domain of propositional logic.

In this paper, we present a formal model for intelli-
gent agents that can be trained to compete with humans
in propositional reasoning. An agent is presented that
learns the syntax and standard axioms of propositional
logic from scratch. It can then prove tautologies and
perform above average human score.

Section 2 presents the computational model, section
3 shows the training and evaluation of an agent, sec-
tion 4 discusses the results, and section 5 concludes the
paper.

2 Computational model

Our computational model is inspired by cognitive mod-
eling and employs a simple cognitive model with
bounded cognitive resources. An explicit representation
of working memory enables the agent to perform de-
ductive computations, and its long-term memory stores
symbolic concepts and axioms. Learning is achieved by
a simple formulation of Occam’s razor together with a
small set of strategies.

Definition 1 (Tag) A tag is a string of unicode charac-
ters with no punctuation marks such as period, comma
or colon.

Definition 2 (Variable) A variable is a string of the
form σ : τ, where τ is a tag and σ ∈ {x,y,z}.

For example, x:Formula and y:Digit are variables.

Definition 3 (Term) A term is a finite binary tree
whose nodes contain tags or variables, with the restric-
tion that variables can only appear in the leaf nodes.

Hereafter, we will write terms in conventional lin-
earized form using infix notation, such as 2 + 3 and
P∧ Q. For the purpose of implementing this model as
a computer program, we use a standard parser and lin-
earizer to read and write terms in text format.

Definition 4 (Axiom) An axiom has the form (τ,a Z=⇒
b) or (τ,a 7−→ b), where τ is a tag, and a and b are
terms.

Example 1 (Axioms) Following are some axioms.

(Taut,P∨Q 7−→ P) (1)
(Taut,⊥∨x : Formula Z=⇒ x : Formula) (2)
(Arith,3∗2 Z=⇒ 6) (3)
(Arith,x:Number+0 Z=⇒ x:Number) (4)

Definition 5 (Theory) A theory is a finite set of ax-
ioms.

Definition 6 (Chunk) A chunk is an item of the form
(τ,t) where τ is a tag and t is a term.

Definition 7 (Assignment) An assignment is a partial
function from variables to terms.



An instance of an assignment is the following.

σ = {(x : Formula,>),(y : Formula,P)}

By extention, assignments are defined from terms to
terms. E.g.,

σ(x : Formula→ y : Formula) =>→ Q

For a variable-free term t, σ(t) = t.

Definition 8 (Shallow rewrite) A shallow rewrite re-
places a term t ′ with a term t ′′ if there is an axiom
(τ, t1 7−→ t2) in the theory and there is an assignment
σ such that σ(t1) = t ′ and σ(t2) = t ′′.

t ′
(τ, t1 7−→ t2)

t ′′

Definition 9 (Deep rewrite) A deep rewrite replaces a
single occurrence of a subterm t ′ in a term t (which can
be t itself) with another term t ′′, if there is an axiom
(τ, t1 Z=⇒ t2) in the theory and there exists an assign-
ment σ such that σ(t1) = t ′ and σ(t2) = t ′′.

t(t ′)
(τ, t1 Z=⇒ t2)

t(t ′′)

By extension, we shall call an axiom deep if it has the
form (τ, t ′ Z=⇒ t ′′) and shallow if it is like (τ, t ′ 7−→ t ′′).

Example 2 Below is an example of a shallow rewrite.

P∨Q
(Taut,P∨Q 7−→ P)

P

Example 3 An instance of a deep rewrite is the follow-
ing.

(⊥∨P)→ Q
(2)

P→ Q

Note that a shallow rewrite operates only on the term
itself, while a deep rewrite can also apply on a subterm
within the term. Thus, a deep rewrite encompasses the
shallow rewrite, but not vice versa.

Semantically, deep axioms are intended to preserve
equivalence and shallow axioms to preserve sufficiency.
Thus, a shallow axiom such as (Taut,P ∨ Q 7−→ P)
means that, in order to prove the logical truth of P∨ Q,
it is sufficient to prove that P is true. Although deep
axioms preserve equivalence, the deep rewrite is unidi-
rectional. For example, the axiom (Taut,¬¬P Z=⇒ P)
rewrites ¬¬P to P, but not vice versa.

Definition 10 (Computation) A computation is a se-
quence of distinct terms (t0, . . . , tn) such that ti+1 is com-
puted from ti by applying deep or shallow rewrite.

Note that computations are acyclic. Hereafter, com-
putations will be written vertically from top to bottom,
with every transition marked with the relevant axiom
used by the rewrite rules.

Example 4 Below is an example of a computation in
the domain of propositional logic.

¬>→ Q
(Taut,¬> Z=⇒⊥)

⊥→ Q
(Taut,⊥→ x : Formula Z=⇒>)

>
Example 5 Following is a computation in the domain
of Arithmetic.

(3+0)∗2
(4)

3∗2
(3)

6

Definition 11 (Term size) The size of a term t, denoted
s(t), is the number of nodes in t.

The definition of size is extended to axioms as, for
an axiom a = (τ, t1 Z=⇒ t2), its size is defined as s(a) =
s(t1)+ s(t2). The size of a theory T is s(T ) = ∑{s(a) :
a ∈ T}.

Definition 12 (Agent) An agent is a tuple
(T,C,W,L,D), where

T is a theory, representing beliefs in the declarative
memory;

C is a set of chunks, that represents concepts in the
declarative memory;

W is a natural number that represents working mem-
ory capacity;

L is a natural number that limits the maximum length
of computations (representing attention span);

D is a natural number that boundes the maximum size
of theories.

Definition 13 (Bounded computation) Given an
agent A = (T,C,W,L,D), a bounded computation is a
sequence of distinct terms (t0, . . . , tn) such that:

1. n≤ L;
2. for each term ti, s(ti)≤W;
3. each transition from ti to ti+1 uses an axiom from

T ;



4. for 1≤ i < j ≤ n, ti does not appear as a subterm
in t j.

Condition 4 above is a weak restriction on increasing
sizes of terms in a computation.

Definition 14 (Induction Item) An Induction Item is a
tuple (τ, t1, t2,u), where τ is a tag, t1 and t2 are terms,
and u is the utility (an integer). In addition, t1 and t2 do
not contain any variables.

Definition 15 (Induction Problem) An Induction
Problem (IP) is a finite set of induction items.

Example 6 Below is an example of an IP.

(Taut,P∨>,>,1) (5)
(Taut,Q∨>,>,1) (6)
(Taut,P∨Q,Q,−1) (7)

Definition 16 (Item computation) Agent A computes
an induction item (τ, t1, t2,u) if there is a bounded com-
putation from t1 to t2 satisfying the following condition.

For any term ti in the computation and any axiom
(τ,w1 Z=⇒ w2) or (τ,w1 7−→ w2), if w1 contains a vari-
able (x:Tag) that matches with a subterm t ′ in ti, then t ′

must be of type Tag, i.e., there must be a bounded com-
putation (for type-checking) from t ′ to Tag using only
axioms with tag Lang.

Example 7 Example 4 contains a bounded computa-
tion of induction item (Taut,¬>→ Q,>,1), in addition
to the following type-checking computation.

Q
(Lang,Q Z=⇒ Boolean)

Boolean
(Lang,Boolean Z=⇒ Formula)

Formula

Item computations are goal-driven bounded compu-
tations. We use the standard A∗ search algorithm to find
bounded computations of minimum length.

Definition 17 (Performance) The performance p of
agent A on induction problem IP is computed as
p = ∑{u : (τ, t1, t2,u)∈ IP and A computes (τ, t1, t2,u)}.
We use the convention ∑ /0= 0 to ensure that p is always
defined.

Induction items with u < 0, e.g., (7), are negative ex-
amples. Such an induction item, if solved, will reduce
the performance of the agent. Thus, to achieve maxi-
mum performance, an agent must solve all items with
u > 0 and must not solve any item with u < 0.

As we shall see now, if an agent cannot compute an
induction item with u > 0, it tries to extend its theory in
a way that enables it to compute that item.

Definition 18 (Strategy) A strategy is a method to
form axioms for constructing new theories.

Our model includes the following strategies.

Strategy 1 (Abstraction) Axiom (τ, t ′ Z=⇒ w′) is
formed from the induction item (τ, t,w,u) by abstrac-
tion, where t ′ is obtained by replacing one or more
subterms of t with variables, and w′ is obtained
similarly from w.

Abstraction is a straightforward way of generalizing
observations. Below is an example.

Example 8 Here are some of the axioms constructed
by abstraction from item (Taut,P∧P,P,1).

(Taut,x : Formula Z=⇒ P)

(Taut,x : Formula∧x : Formula Z=⇒ P)

(Taut,x : Formula∧x : Formula Z=⇒ x : Formula)

Strategy 2 (Crossover) Axioms (τ, t ′ Z=⇒ w′) and
(τ, t ′ 7−→ w′) are formed from chunks (τ, t) and (τ,w)
by crossover, where t ′ is obtained by replacing a sub-
term of t with a subterm of w (w′ is obtained similarly).

Crossover is a powerful but computationally expen-
sive method of constructing new theories. All the
chunks in the agent’s memory and also a small number
of variables are used to generate axioms by crossover.
Simple heuristics are applied to reduce the number of
generated theories.

Example 9 Following are some of the axioms formed
by crossover from chunks (Taut,P∧ Q) and (Taut,>∨
⊥).

(Taut,P Z=⇒>)
(Taut,> Z=⇒ P∧Q)
(Taut,P∨Q Z=⇒⊥)
(Taut,Q∨ (P∧Q) Z=⇒⊥)

Strategy 3 (Memorization) The axiom (τ, t1 Z=⇒ t2)
is formed by memorization from the induction item
(τ, t1, t2,u) if u > 0.

Memorization is the strategy to remember the exam-
ples literally. It will be used if no other strategy from
the previous strategies works.



Example 10 Axiom (Formula,¬⊥ Z=⇒ >) is formed
by memorization from item (Formula,¬⊥,>,1).

The set of strategies can easily be extended if re-
quired. We also have a strategy to find recursive defini-
tions of functions; for example, for solving number se-
quence problems such as 8,11,14,?. It is not described
here however, being irrelevant for propositional logic.

Definition 19 (Update function) The update function
takes as input agent A = (T,C,W,L,D) and an IP, and
outputs agent A′ = (T ∪T ′,C∪C′,W,L,D).

C′ is obtained from IP by taking all the subterms of
the terms in the items of IP.

T ′ = /0 if all items in IP with positive utility have
bounded computations; otherwise T ′ is obtained by the
following procedure.

First, construct a set Θ of new theories whose ax-
ioms are generated by the strategies mentioned earlier
(strategies 1 to 3). Each theory T ∗ in Θ is subject to a
set of conditions, such as the following:

• number of axioms in T ∗ ≤ 3;
• no axiom of T ∗ appears in T ;
• s(T ∗)≤ D if T ∗ is formed by Crossover.

Theory T ′ is selected from Θ by applying the follow-
ing selection criteria in the listed order.

1. Agent A′ performs optimally on the IP.
2. s(T ′) is as small as possible.
3. T ′ contains the maximum number of deep axioms.
4. T ′ has the maximum number of variable tokens.
5. T ′ has the minimum number of variable types.
6. T ′ is lexicographically minimal.

Condition 2 above is a formal application of Occam’s
razor and selects an explanation (i.e., theory) of the
smallest size that can account for the observations (IP).

Strategies 1 to 3 are used one by one, such that if
strategy n leads to a suitable T ′, the Update function
halts, otherwise it proceeds to strategy n+1.

3 Results

3.1 Implementation
We implemented our model in the functional program-
ming language Haskell. The code consists of approx-
imatly 2,500 lines. The program, called OccamStar,
takes an agent and an IP as input, and outputs a new

agent with updated memory (that replaces the input
agent). It also produces bounded computations of the
items in IP.

3.2 Learning process
To illustrate the learning process, we show here a set of
examples that allows the agent to acquire the elemen-
tary axioms of propositional logic.

Let the agent A be initiated with T = /0, C = /0, W = 8,
L = 10, and D = 4.

Example 11 Let IP consist of the following items.

(Lang,>,Boolean,1) (8)
(Lang,⊥,Boolean,1) (9)

OccamStar takes agent A and the above IP, and updates
A by adding the following axioms to the theory.

(Lang,> Z=⇒ Boolean) (10)
(Lang,⊥ Z=⇒ Boolean) (11)

Item 8 is computed with this theory as follows.

> (10)
Boolean

With a similar IP, agent A learns the following axioms.

(Lang,P Z=⇒ Boolean) (12)
(Lang,Q Z=⇒ Boolean) (13)
(Lang,R Z=⇒ Boolean) (14)

Example 12 Now, continuing the learning process, let
IP be given as follows.

(Lang,>,Formula,1) (15)
(Lang,P,Formula,1) (16)

Then, agent A learns the following axiom.

(Lang,Boolean Z=⇒ Formula) (17)

Intuitively, agent A knows that a boolean symbol is a
formula. The bounded computation for item (15) is as
follows.

> (10)
Boolean (17)
Formula



Example 13 Let IP contain the following items.

(Lang,>∧⊥,Formula,1) (18)
(Lang,P∧Q,Formula,1) (19)

Then, the following axiom is added to the theory.

(Lang,Formula∧Formula Z=⇒ Formula) (20)

When the IP contains the tag Lang, the agent prefers
the most general tag. From (17), it knows that the tag
Formula is more general than Boolean. Thus, it selects
(20) instead of the following axiom that is equally valid.

(Lang,Boolean∧Boolean Z=⇒ Formula) (21)

With similar IPs, agent A adds the following axioms.

(Lang,¬Formula Z=⇒ Formula) (22)
(Lang,Formula∨Formula Z=⇒ Formula) (23)
(Lang,Formula→ Formula Z=⇒ Formula) (24)
(Lang,Formula↔ Formula Z=⇒ Formula) (25)

Example 14 Next, let IP consist of the following items.

(Taut,>∨P,>,1) (26)
(Taut,>∨ (¬Q),>,1) (27)
(Taut,P∨Q,P,−1) (28)

Then, agent A acquires the following axiom.

(Taut,>∨x : Formula Z=⇒>) (29)

Agent A is now able to solve new problems such as
the following.

>∨ (¬R)
(29)>

The above computation requires an additional type-
checking computation to verify that ¬R is a Formula.

¬R (14)¬Boolean (17)¬Formula (22)
Formula

The inclusion of the negative item (28) in example
14 invalidates the following erroneous axiom, which
would have been learned by the agent otherwise.

(Taut,x : Formula∨y : Formula Z=⇒ x : Formula)
(30)

Example 15 Let IP have the following items.

(Taut,⊥∨P,P,1) (31)
(Taut,⊥∨¬Q,¬Q,1) (32)
(Taut,P∨Q,Q,−1) (33)

Then, agent A learns the following.

(Taut,⊥∨x : Formula Z=⇒ x : Formula) (34)

The agent can also learn shallow axioms when a neg-
ative item is included in the IP to invalidate a similar
deep axiom. The following example illustrates this.

Example 16 Let IP contain the following items.

(Taut,P∨Q,P,1) (35)
(Taut,P∧ (P∨Q),P∧P,−1) (36)

Then, agent A learns the following.

(Taut,x : Formula∨y : Formula 7−→ x : Formula)
(37)

3.3 Evaluation
An experiment reported in [16] presented 40 tautologies
and 40 non-tautologies, mixed randomly, to participants
who were asked to decide which ones were tautologies.
The subjects were university students of computer sci-
ence who had received tuition in propositional logic.
The mean accuracy of participants on tautologies was
32.1, with the maximum score of 35 (out of 40). All
tautologies except one (trial 10) were solved by at least
one of the participants.

The computer program OccamStar was used to train
an agent LA with the basic axioms of propositional
logic, a subset of the axioms used by [16] in their
computational model. Parameters were set as follows:
T = /0, C = /0, W = 8, L = 10 and D = 4. The train-
ing proceeded in the same fashion as illustrated with
examples previously, starting with an empty theory and
resulting in the theory that is given in Appendix A.

Agent LA was able to solve 34 tautologies out of the
40. It computed the solutions within a few minutes on
a standard personal computer. Sample computations of
tautologies produced by LA are presented below.

Computation of trial 3:

(P∨P)↔¬¬P
(A43)

P↔¬¬P (A57)
P↔ P (A18)
>



Computation of trial 17:

P∨ (P∨¬(Q∧P))
(A83)

P∨¬(Q∧P)
(A45)

¬(Q∧P)∨P
(A60)

(Q∧P)→ P
(A22)

>
Computation of trial 33:

(P↔ (Q↔ (P∨P)))→ Q
(A43)

(P↔ (Q↔ P))→ Q
(A46)

(P↔ (P↔ Q))→ Q
(A52)

((P↔ P)↔ Q)→ Q
(A18)

(>↔ Q)→ Q
(A39)

Q→ Q
(A17)

>
Computation of trial 37:

(P∧Q)→ (Q∨R)
(A61)

¬(P∧Q)∨ (Q∨R)
(A50)

(¬(P∧Q)∨Q)∨R
(A82)

(¬(P∧Q)∨Q)
(A60)

(P∧Q)→ Q
(A22)

>

4 Discussion
The model described here incorporates some elements
of cognitive modeling to reduce the combinatorial ex-
plosion of the search space, and achieves human level
performance in mutiple domains. We have demon-
strated this in the case of propositional logic, where an
agent trained in logic was able to compete with human
scores in an experiment on tautologies. Nothing about
our agent was geared specifically to logic, however. In-
deed, the agent can equally well be trained in arithmetic
as was done in [14]. When trained in arithmetic, the
agent was able to solve previously unseen deductive
problems (e.g., what is 65∗7?) and inductive problems
(e.g., what number comes next in 8,11,14?). A similar
model developed earlier was able to solve number se-
quence problems not seen before from real IQ tests and
it scored above average human performance [15].

Cognitive modeling for the purposes of AI does not
need to be psychologically verified. AI aims to achieve
human level performance (or beyond) on intelligence

problems, therefore the methods are not required to be
cognitively grounded. Thus, AI does not need psycho-
logically plausible cognitive models, rather only partic-
ular elements from the field of cognitive modeling that
can help reduce the computational complexity of the so-
lution. This can be compared with the biologically in-
spired computing methods such as neural networks, ant
colony optimization algorithms or genetic algorithms.
Such algorithms do not necessarily imitate any biolog-
ical systems, rather are designed with inspiration from
certain properties of natural systems.

The bounds over cognitive resources, such as work-
ing memory capacity (W ), can be manipulated to vary
the agent performance and learning complexity. For in-
stance, with W = 10, agent LA correctly solved 36 tau-
tologies out of 40. Learning additional axioms helps it
score even higher. It is still an open question whether
the agent can acquire a complete theory of propositional
logic, and this requires further work.

5 Conclusion
The results presented here suggest that resource
bounded cognitive models can be helpful in AI for con-
structing intelligent agents who perform at or above hu-
man level. For the purposes of AI, such cognitive mod-
els need not be psychologically plausible, as long as
they help solve the problems. We believe that a more re-
fined cognitive model would strengthen our model fur-
ther however, for example in acquiring larger theories
and reducing the search complexity.

We have presented an agent architecture that can ac-
quire knowledge in multiple symbolic domains. Thus,
it represents a restricted form of artificial general in-
telligence. Potential application areas of such agents
include automated theorem proving, inductive program
synthesis, intelligent pedagogical systems, and compu-
tational linguistic systems.
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A Agent theory
Following is the theory learned by agent LA. For read-
ability, x:Formula is shortened to x, y:Formula is short-



ened to y, and z:Formula is written z.

Language syntax:

A1. (Lang,> Z=⇒ Boolean)

A2. (Lang,⊥ Z=⇒ Boolean)

A3. (Lang,P Z=⇒ Boolean)

A4. (Lang,Q Z=⇒ Boolean)

A5. (Lang,R Z=⇒ Boolean)

A6. (Lang,Boolean Z=⇒ Formula)

A7. (Lang,¬Formula Z=⇒ Formula)

A8. (Lang,Formula∨Formula Z=⇒ Formula)

A9. (Lang,Formula∧Formula Z=⇒ Formula)

A10. (Lang,Formula→ Formula Z=⇒ Formula)

A11. (Lang,Formula↔ Formula Z=⇒ Formula)

Tautologies:

A12. (Taut,¬⊥ Z=⇒>)
A13. (Taut,x∨> Z=⇒>)
A14. (Taut,>∨x Z=⇒>)
A15. (Taut,x→> Z=⇒>)
A16. (Taut,⊥→ x Z=⇒>)
A17. (Taut,x→ x Z=⇒>)
A18. (Taut,x↔ x Z=⇒>)
A19. (Taut,x∨¬x Z=⇒>)
A20. (Taut,¬x∨x Z=⇒>)
A21. (Taut,(x∧y)→ x Z=⇒>)
A22. (Taut,(x∧y)→ y Z=⇒>)
A23. (Taut,x→ (x∨y) Z=⇒>)
A24. (Taut,y→ (x∨y) Z=⇒>)

Contradictions:

A25. (Taut,¬> Z=⇒⊥)
A26. (Taut,x∧⊥ Z=⇒⊥)
A27. (Taut,⊥∧x Z=⇒⊥)
A28. (Taut,x∧¬x Z=⇒⊥)
A29. (Taut,¬x∧x Z=⇒⊥)
A30. (Taut,x↔¬x Z=⇒⊥)
A31. (Taut,¬x↔ x Z=⇒⊥)

Identity:

A32. (Taut,x∨⊥ Z=⇒ x)

A33. (Taut,⊥∨x Z=⇒ x)

A34. (Taut,x∧> Z=⇒ x)

A35. (Taut,>∧x Z=⇒ x)

A36. (Taut,>→ x Z=⇒ x)

A37. (Taut,x→⊥ Z=⇒¬x)

A38. (Taut,x↔> Z=⇒ x)

A39. (Taut,>↔ x Z=⇒ x)

A40. (Taut,x↔⊥ Z=⇒¬x)
A41. (Taut,⊥↔ x Z=⇒¬x)

Idempotence:

A42. (Taut,x∧x Z=⇒ x)

A43. (Taut,x∨x Z=⇒ x)

Commutativity:

A44. (Taut,x∧y Z=⇒ y∧x)
A45. (Taut,x∨y Z=⇒ y∨x)
A46. (Taut,x↔ y Z=⇒ y↔ x)

Associativity:

A47. (Taut,(x∧y)∧z Z=⇒ x∧ (y∧z))
A48. (Taut,x∧ (y∧z) Z=⇒ (x∧y)∧z)
A49. (Taut,(x∨y)∨z Z=⇒ x∨ (y∨z))
A50. (Taut,x∨ (y∨z) Z=⇒ (x∨y)∨z)
A51. (Taut,(x↔ y)↔ z Z=⇒ x↔ (y↔ z))

A52. (Taut,x↔ (y↔ z) Z=⇒ (x↔ y)↔ z)

Distributivity:

A53. (Taut,x∧ (y∨z) Z=⇒ (x∧y)∨ (x∧z))
A54. (Taut,x∨ (y∧z) Z=⇒ (x∨y)∧ (x∨z))
A55. (Taut,(x∧y)∨ (x∧z) Z=⇒ x∧ (y∨z))
A56. (Taut,(x∨y)∧ (x∨z) Z=⇒ x∨ (y∧z))

Negation:

A57. (Taut,¬¬x Z=⇒ x)

A58. (Taut,x→¬x Z=⇒¬x)
A59. (Taut,¬x→ x Z=⇒ x)

A60. (Taut,¬x∨y Z=⇒ x→ y)

A61. (Taut,x→ y Z=⇒¬x∨y)
A62. (Taut,¬(x→ y) Z=⇒ x∧¬y)
A63. (Taut,x∧¬y Z=⇒¬(x→ y)

A64. (Taut,¬y→¬x Z=⇒ x→ y)

A65. (Taut,x→ y Z=⇒¬y→¬x

De Morgan:

A66. (Taut,¬x∧¬y Z=⇒¬(x∨y))
A67. (Taut,¬(x∨y) Z=⇒¬x∧¬y)
A68. (Taut,¬(¬x∧¬y) Z=⇒ x∨y)
A69. (Taut,x∨y Z=⇒¬(¬x∧¬y))
A70. (Taut,¬(x∧¬y) Z=⇒¬x∨y)
A71. (Taut,¬x∨y Z=⇒¬(x∧¬y))



A72. (Taut,¬(¬x∧y) Z=⇒ x∨¬y)
A73. (Taut,x∨¬y Z=⇒¬(¬x∧y))
A74. (Taut,¬x∨¬y Z=⇒¬(x∧y))
A75. (Taut,¬(x∧y) Z=⇒¬x∨¬y)
A76. (Taut,¬(¬x∨¬y) Z=⇒ x∧y)
A77. (Taut,x∧y Z=⇒¬(¬x∨¬y))
A78. (Taut,¬(x∨¬y) Z=⇒¬x∧y)
A79. (Taut,¬x∧y Z=⇒¬(x∨¬y))
A80. (Taut,¬(¬x∨y) Z=⇒ x∧¬y)
A81. (Taut,x∧¬y Z=⇒¬(¬x∨y))

Axioms for shallow rewrite:

A82. (Taut,x∨y 7−→ x)

A83. (Taut,x∨y 7−→ y)

A84. (Taut,x→ y 7−→ y)

B Tautologies
Below is the list of 40 tautologies that were used for
testing agent LA. The same test items were used for test-
ing human performance [16]. Column L shows the min-
imum length of bounded computations generated by LA.
The symbol * indicates that agent LA failed to find a
computation. LA successfully identified the tautologies
in 34 of 40 cases. Accuracy and latency measures of
these tautologies are listed in [16]. Trial numbers are
non-consecutive as non-tautologies have been omitted
from the list.

Trial Formula L
1 P→ ((¬¬P→ P)∨Q) 4
2 (¬P↔ P)→ (Q↔ Q) 2
3 (P∨P)→¬¬P 3
5 (¬P∧P)→ Q 2
7 P→ (Q→ P) 2
9 ¬(¬P↔ P) 2
10 (¬(P→ Q)∧R)→¬Q *
11 ¬¬¬(P∧¬P) 3
12 (P→ P)∨Q 2
15 (P∧P)∨¬P 2
17 P∨ (P∨ (¬(Q∧P))) 4
18 (P↔¬P)→ (Q↔ P) 2
21 ¬((P→¬Q)∨P)→ Q *
22 ((P∨¬Q)∨Q)∨P 4
28 (P∧P)→ P 1
29 (P∧P)↔ P 2

32 ¬¬(P→ Q)∨¬Q 3
33 (P↔ P)∨ (P∧¬Q) 6
35 (P↔ P)∨ (P∧¬Q) 2
37 (P∧Q)→ (Q∨R) 5
40 ¬P↔¬P 1
42 (¬P∨Q)∨P 3
43 ¬(P→ P)→ Q 3
44 P↔¬¬P 2
45 P→ ((P↔ Q)∨ (Q→ R)) *
50 (P→ Q)→ (P→ P) 2
52 ¬(P∧P)∨ (Q→ Q) 2
56 P∨ (P→¬Q) 4
57 P∨ ((P→ Q)∨P) 5
62 (P∧ ((Q→ P)↔ P))↔ P *
63 P∨ (Q∨ ((Q∧R)↔ P)) *
64 P∨ ((Q∧Q)→ Q) 2
66 P∨ (P→ Q) 4
67 P→ (P∨Q) 1
69 ¬(P→ Q)∨ (Q→ Q) 2
70 ¬¬((P→ Q)∧Q)∧Q *
71 P∨ (P→¬¬(Q↔ Q)) 4
72 (P→¬Q)∨P 4
76 (P→¬Q)∨Q 4
77 ¬P∨ (Q→ (P∨P)) 4
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