
Symbolic Reasoning with Bounded Cognitive Resources
Claes Strannegård (claes.strannegard@gu.se)

Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg
Department of Applied Information Technology, Chalmers University of Technology

Abdul Rahim Nizamani (abdulrahim.nizamani@gu.se)
Department of Applied Information Technology, University of Gothenburg

Fredrik Engström (fredrik.engstrom@gu.se)
Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg

Olle Häggström (olleh@chalmers.se)
Department of Mathematical Sciences, Chalmers University of Technology

Abstract

We present a multi-domain computational model for symbolic
reasoning that was designed with the aim of matching human
performance. The computational model is able to reason by
deduction, induction, and abduction. It begins with an arbitrary
theory in a given domain and gradually extends this theory as
new regularities are learned from positive and negative exam-
ples. At the core of the computational model is a cognitive
model with bounded cognitive resources. The combinatorial
explosion problem, which frequently arises in inductive learn-
ing, is tackled by searching for solutions inside this cognitive
model only. By way of example, we show that the compu-
tational model can learn elements of two different domains,
namely arithmetic and English grammar.

Keywords: symbolic reasoning; bounded resources

Introduction
Artificial intelligence (AI) concerns computer models with
intelligence that ideally matches or exceeds that of humans.
Strong AI, a.k.a. artificial general intelligence, targets general
intelligence, whereas weak AI targets domain-specific intel-
ligence. Weak AI has attained enormous success over the
last decades, whereas strong AI has yet to be achieved (Wang
& Goertzel, 2012; Kühnberger et al., 2013). The only known
cognitive system with general intelligence is the human brain;
thus, researchers in strong AI are seeking inspiration from
neuroscience and cognitive psychology.

In this paper, we propose a strong AI model for the case
of symbolic reasoning. The proposed model is able to reason
by induction, deduction, and abduction. The model includes
a simplified cognitive model with explicit representations of
several cognitive resources, including declarative and work-
ing memory. Our rationale for including a cognitive model
in our model for strong AI is to exploit the limitations of hu-
man cognitive resources to decrease the computational com-
plexity. This paper constitutes a continuation and generaliza-
tion of our earlier work on models of deduction and induction
with bounded resources (Strannegård, Engström, et al., 2013;
Strannegård, Nizamani, et al., 2013).

In this paper, we consider symbolic reasoning, which in-
volves discrete signals, in contrast to sub-symbolic reasoning,
which involves analogue signals. Peirce (1958) distinguished

between three types of symbolic reasoning: deduction, induc-
tion, and abduction. These processes have been described as
methods to draw rational conclusions, generalize from expe-
rience, and make plausible assumptions, respectively (Garcez
& Lamb, 2011).

There is an extensive body of literature on symbolic rea-
soning in logic, psychology, computer science, and linguis-
tics. In logic, reasoning is studied in the form of formal proofs
in proof theory (Troelstra & Schwichtenberg, 2000) and in
psychology, reasoning is studied, e.g. in the mental logic and
mental model traditions (Adler & Rips, 2008).

One research field in computer science that studies rea-
soning is automatic theorem proving (Robinson & Voronkov,
2001). Another field is machine learning, including Bayesian
inference, which considers inferences in a setting where prob-
abilistic data are available (Tenenbaum et al., 2011). A
third research field involving reasoning is inductive logic pro-
gramming (Muggleton & Chen, 2012) and, more generally,
inductive program synthesis, where the goal is to develop
programs from examples consisting of input-output pairs
(Kitzelmann, 2010). The two main approaches of inductive
program synthesis are the analytical approach, which uses ex-
amples as a basis for constructing programs, and the generate-
and-test approach, which uses examples for testing purposes
only. Analytical techniques include anti-unification and re-
cursive relation learning. A representative system of the
generate-and-test approach, MAGICHASKELLER searches
among Haskell programs that may include higher-order func-
tions (Katayama, 2005). The systems FLIP (Ferri-Ramı́rez
et al., 2001) and ADATE (Olsson, 1998) blend the two ap-
proaches in an inductive logic programming setting. The sys-
tem ADATE also uses evolutionary methods to generate pro-
grams. A major obstacle to program synthesis on a larger
scale is the computational complexity of the state-of-the-art
methods (Kitzelmann, 2010).

Reasoning is also studied in computational linguistics,
particularly in grammar induction (Clark & Lappin, 2010),
where classes of languages are learned from positive and neg-
ative examples. Computational complexity is a major issue in
this field as well.

A particular line of research on reasoning can be traced
back to Occam’s razor, the principle of preferring simple and
short explanations in science and everyday life. There are
several complexity measures that can be regarded as formal
versions of Occam’s razor. Some of these, e.g., Kolmogorov
complexity and Solomonoff complexity, are not computable,
whereas others, e.g., Levin complexity, are computable (Li
& Vitányi, 2009). Some of the computable versions are ob-
tained by combining Kolmogorov complexity with traditional
complexity classes pertaining to the time and space used by
Turing machines.

The universal AI model AIXI is based on Solomonoff
complexity and is therefore not computable in its original
form. However, this model also exists in restricted versions
that are computable and capable of practical problem solving,
e.g., in game domains (Veness et al., 2011).

Different aspects of reasoning have been modeled in cog-
nitive architectures, such as Soar (Laird et al., 1987), ACT-
R (Anderson & Lebiere, 1998), CHREST (Gobet & Lane,
2010), and NARS (Wang, 2007). Cognitive architectures
commonly model computations as rewrite sequences in ab-
stract rewrite systems (Bezem et al., 2003). Moreover, they
often include explicit models of cognitive resources, includ-
ing working, sensory, declarative, and procedural memory.
These cognitive resources are bounded in various ways, e.g.,
with respect to capacity, duration, and access time (Kosslyn
& Smith, 2006). In particular, working memory can typi-
cally only hold a small number of items, or chunks, and is a
well-known bottleneck of human problem solving (Toms et
al., 1993).

Cognitive resources are required for computing and learn-
ing. According to Piaget, there are two ways of adapting to
new information: assimilation, in which new pieces of in-
formation are fitted into existing knowledge structures, and
accommodation, in which the new information pieces cause
new knowledge structures to be formed or old structures to be
modified (Piaget, 1937).

Computational model
Computational models that are used in cognitive psychology
should ideally perform on the human level with respect to
any performance measure. Thus, the models should perform
(i) at least on the human level and (ii) at most on the human
level. For AI, however, satisfying (i) is generally sufficient. In
fact, performing above the human level is only an advantage.
Thus, constructing a unilateral cognitive model that satisfies
(i) but not necessarily (ii) may be sufficient for the purpose of
AI and also considerably easier than constructing a psycho-
logically plausible model that satisfies both (i) and (ii).

Our computational model includes such a unilateral cogni-
tive model, and our rationale is as follows. Suppose a human
(with bounded cognitive resources) can find a solution to a
certain problem. A solution to the problem should then ex-
ist inside a suitable cognitive model of this human (also with
bounded resources). Thus, we can search for solutions exclu-

sively among those solution candidates that use no more cog-
nitive resources than are available. This search strategy can
be combined with any heuristic search algorithm. In this man-
ner, we may accelerate the search considerably, thus avoiding
the combinatorial explosion that is associated with many stan-
dard AI algorithms.

Our computational model also includes a performance
measure for agents that was inspired by the notion of biolog-
ical fitness (the ability of an organism to survive and repro-
duce). More precisely, we assume that a notion of reward and
punishment exists in the background, similar to the scheme
in reinforcement learning models. Thus, each example will
have an associated utility, which may be positive (reward) or
negative (punishment). We now proceed to define our com-
putational model formally.

Definition 1 A language is a set of strings that is generated
by some finite context-free grammar.

The elements of a language L are called L-terms. Two ex-
amples of languages, whose grammars are expressed in the
Backus-Naur form, are given below.

Example 1 Below is a definition of the language Stream,
consisting of arbitrary streams of words over a five-word vo-
cabulary. We use S as the start symbol of grammars.
Word = Alice | Bob | plays | crawls | OK
S = Word | Word S

For example, Alice crawls and plays plays are
Stream-terms.

Example 2 A definition of the language Arith, consisting of
simple arithmetical expressions, is shown below.
Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Num = Digit | Num Digit
Var = x | y | z
Unary = f
Binary = + | g
Chunk = f(0) | f(x) | f(x+1) | g(x,0) |

g(x,y) | g(x,y+1)
S = Num | Var | Unary S | Binary S S | Chunk

For example, 2+4 and f(x+1) are (pretty-printed) Arith-
terms. Strictly speaking, the syntactic category Chunk is re-
dundant here. Our reason for including it nevertheless is to
model memory chunks.

Definition 2 An L-axiom is an expression of the form t � t ′,
where t and t ′ are L-terms.

For example, x+y � y+x is an Arith-axiom and
Alice crawls� OK is a Stream-axiom.

Definition 3 An L-theory is a finite set of L-axioms.

The purpose of theories is to serve as building blocks of com-
putations, as explained below.

Definition 4 Suppose that t and t ′ are L-terms such that t ′ is
a substring of t. Then, we say that t ′ is a subterm of t and
write t(t ′).

Languages may include the syntactic category Var, which
specifies the variables of L. For instance, Arith contains the
variables x, y, and z.

Definition 5 An L-substitution is a partial function σ that
maps variables of L to terms of L.

For instance, σ = {(x,2),(y,3)} is an Arith-substitution. By
extension, we will discuss substitutions that map terms to
terms. In the same example, we obtain σ(x+y) = 2+3. We
are now ready to define our only computation rule.

Definition 6 Let L be a language, and let T be an L-theory
containing the axiom t ′� t ′′. Additionally, suppose that t(t1)
and t(t2) are L-terms such that σ(t ′) = t1 and σ(t ′′) = t2 for
some L-substitution σ. Then, we write

t(t1)
t ′� t ′′t(t2)

and state that the conclusion (the term below the line) follows
from the premise (the term above the line) by T -rewriting.

Example 3 Suppose that T is a theory in the language Arith,
defined in Example 2, and x+y� y+x ∈ T . Then, the follow-
ing is an application of T -rewriting (with σ as above):

2+3 x+y� y+x
3+2

Definition 7 Let L be a language, and let T be an L-theory. A
T -computation is a sequence of terms (t0, . . . , tn) such that for
all i≤ n, ti+1 follows from ti by an application of T -rewriting.

We will write computations in a vertical style, with the first
term of the computation on top and the last term at the bottom.

Example 4 Below is a computation in a simple theory of En-
glish grammar. Intuitively, the computation demonstrates that
the word stream Bob plays is grammatically correct.

Bob plays
plays� crawls

Bob crawls
Bob� Alice

Alice crawls
Alice crawls� OK

OK
Example 5 Below is a computation in a simple theory of
arithmetic. Intuitively, the computation is a calculation of
the term (2+4)*(6+1). In fact, all of the axioms used here
preserve equality.

(2+4)*(6+1)
2+4� 6

6*(6+1)
6+1� 7

6*7
6*7� 42

42
Example 6 Below is a computation in a simple theory of
propositional logic. Intuitively, the computation is a proof
of the tautology (x⇒ y)∨ x. In fact, all of the axioms used
here preserve logical equivalence.

(x => y) || x
(x => y)� (not x || y)

(not x || y) || x
x || y� y || x

(y || not x) || x
(x || y) || z� x || (y || z)

y || (not x || x)
x || not x� True

y || True
x || True� True

True

Example 7 Below is a computation in a simple theory of
lists. This computation is expressed in a language similar
to the Haskell programming language. Intuitively, the com-
putation demonstrates that the result of applying the revers-
ing function rev to the list [6,7] is the list [7,6]. Here,
the axiom rev([]) � [] states that the result of revers-
ing an empty list [] is again []. The axiom rev(x:xs) �
rev(xs) ++ [x] states that a list that begins with an element
x and continues with a list xs can be reversed by first revers-
ing xs and then moving x to the end.

rev([6,7])
rev(x:xs)� rev(xs) ++ [x]

rev([7]) ++ [6]
rev(x:xs)� rev(xs) ++ [x]

(rev([]) ++ [7]) ++ [6]
rev([])� []

([] ++ [7]) ++ [6]
[] ++ xs� xs

[7] ++ [6]
[x] ++ xs� x:xs

[7,6]

Definition 8 Let t be an L-term. Then, the size of t is defined
as the minimum number of leaf nodes in an L-parse tree of t.

The size of t might model the load of t on the working mem-
ory.

Example 8 Let Arith be as defined in Example 2. Then,
the Arith terms f(x+1), f(x) + 2, and x + 23 have sizes
1, 3, and 4, respectively. Note the role played by the syntactic
category Chunk in this case.

Definition 9 An agent is a tuple (L,T,W,S,D), where

- L is a language,

- T is an L-theory (declarative memory),

- W is a natural number (working memory capacity),

- S is a natural number (assimilation capacity), and

- D is a natural number (accommodation capacity).

Definition 10 Let L be a language, and let A = (L,T,W,S,D)
be an agent. An A-computation is a sequence of L-terms
(t0, . . . , tn) with

- bounded transitions: (t0, . . . , tn) is a T -computation

- bounded width: no ti can have a size that exceeds W

- bounded length: n≤ S.

As will be further clarified in Definition 14, this definition
aims to capture those computations that are within reach of
an unassisted human with language L, declarative memory
T , working memory capacity W , assimilation capacity S, and
accommodation capacity D.

Example 9 Let L = Stream, as defined in Example 1 and let
T consist of all the L-axioms that are used in the computation
of Example 4. Then, A = (L,T,8,10,6) is an agent, and the
aforementioned computation is an A-computation.

Observation 1 Let A be an agent. Then, the set of A-
computations is finite.

Definition 11 Let L be a language. An L-item is a triple
(in,out,u) such that in and out are L-terms, and u is an in-
teger (utility). An L-induction problem (IP) is a finite set of
L-items.

This definition is slightly more general than the ordinary def-
inition of induction problem with positive and negative ex-
amples, which is used in inductive logic programming. The
present definition enables us to treat induction problems as
more fine-grained optimization problems. It may be helpful
to consider utility as rewards (for positive values) and punish-
ments (for negative values). We obtain the ordinary definition
of induction problem by assigning utilities of +1 and -1 to the
positive and negative examples, respectively.

Definition 12 The performance of an agent A on an L-
induction problem I is the number

Σ{u : (in,out,u) ∈ I and in→A out}.

Here, in→A out means that there is an A-computation from
in to out. We use the convention that Σ/0 = 0 to ensure that
the performance is always defined.

Observation 2 The performance measure is computable.

When all parameters are clear from the context, we will
discuss the performance of theories rather than of agents in
some cases.

Definition 13 The size of an axiom is the sum of the sizes of
its left and right terms. The size of a theory is the sum of the
sizes of its axioms.

Definition 14 The Occam function takes as arguments an
agent A = (L,T,W,S,D) and an L-induction problem I. The
function’s value is an L-theory ∆ of maximum size D, such
that the agent (L,T +∆,W,S,D) performs optimally on I in
the sense that no other agent (L,T +∆′,W,S,D), where ∆′ is
at most of size D, performs strictly better on I. Moreover, the
following tiebreakers apply to ∆ in the stated priority order:

1. ∆ has the minimum size.

2. ∆ contains the maximum number of variable occurrences.

3. ∆ contains the minimum number of variables.

4. ∆ is lexicographically minimal.

If there is no sufficiently small improvement ∆ over T , then
the Occam function outputs /0. Condition 1 aims to capture
Occam’s razor. Condition 2 states a preference of generality
in the sense that variables are preferred over constants. Con-
dition 3 states that variables should be reused whenever pos-
sible. Condition 4 ensures that the output is always uniquely
defined.

Observation 3 The Occam function is computable.

This follows since there are only finitely many theories and
associated agent computations to check.

Results
We have developed a program called OCCAM, which is based
on the Occam function and uses an additional strategy for
generating axioms by replacing terms by variables. The pro-
gram first applies several filters to the set of candidate theories
and then it evaluates each remaining candidate theory on the
relevant induction problem using resource-bounded compu-
tations. The program comprises approximately 1,500 lines of
code in the functional programming language Haskell.

In this section, we describe two learning processes in
which OCCAM is used for learning regularities from a small
number of positive and negative examples. The agents con-
sidered in this section have the capacity limits W = 8, S = 10,
and D = 6. OCCAM finds all the solutions discussed in this
section in a matter of minutes. The first learning process con-
cerns English grammar and the challenge is to learn which
sequences of words correspond to grammatically correct sen-
tences.

Example 10 To model the first learning situation, let L =
Stream, as defined in Example 1 and T = /0. Also, suppose
the IP consists of the items

(Alice crawls, OK, 1) (1)
(Alice, OK, -1). (2)

Then, OCCAM returns the theory ∆ consisting of the axiom

Alice crawls� OK. (3)

Item (1) is computable in T +∆ as follows:
Alice crawls (3)

OK

However, item (2) is not computable in T +∆. In fact, there
is no axiom in T +∆ with a left side that matches Alice. A
more general way of demonstrating the non-computability of
an item in a given theory is to generate all of the computations
of this theory and verify that none of them start and end with
the relevant terms. Indeed, this is the manner in which OC-
CAM works. Therefore, the performance of the agent on IP
is 1, which is optimal. Intuitively, the first English sentence
encountered by the agent was learned by heart.

Example 11 Let us now assume that the agent continues the
learning process with T consisting of the axiom (3) from the
previous example. Let the IP be given by

(Alice plays, OK, 1) (4)
(Alice, OK, -1). (5)

Then ∆ consists of the axiom

plays� crawls. (6)

Item (4) is computable in T +∆ as follows:
Alice plays

(6)
Alice crawls (3)

OK

Intuitively, the agent does not learn the second grammatical
sentence that it encounters by heart. Instead, it assumes that
replacing plays by crawls preserves grammatical correct-
ness.

Example 12 We then let T consist of the previously learned
axioms (3) and (6). Let the IP be given by

(Bob crawls, OK, 1) (7)
(Alice, OK, -1). (8)

Then, ∆ consists of the axiom
Bob� Alice. (9)

Item (7) is computable in T +∆ as follows:
Bob crawls (9)

Alice crawls (3)
OK

Intuitively, the agent draws the conclusion that replacing Bob
by Alice preserves grammatical correctness.

Example 13 We now let T consist of the previously learned
axioms (3), (6), and (9). The IP is then given by

(Bob plays, OK, 1) (10)
(Alice, OK, -1). (11)

Then, ∆ = /0, and item (10) is computable in T + ∆, as in
Example 12. Intuitively, no learning occurred, as the sentence
can be analyzed with previously learned knowledge.

Now let us consider a learning process that concerns ele-
mentary arithmetic and the challenge of learning a theory of
arithmetic from examples.
Example 14 Let L = Arith, as defined in Example 2 and
T = /0. Also, suppose the IP consists of the following items:
(5+0, 5, 1) (12)
(5+1, 5, -1). (13)

Then, OCCAM returns the axiom
x+0� x. (14)

Thus, OCCAM finds the identity axiom for + in this case. Item
(12) is computable in T +∆ = {x+0 � x} with a one-step
computation. However, item (13) is not computable in this
theory, as the theory contains no axiom with a left-hand side
that matches 5+1. Thus, the performance of T +∆ is 1, which
is optimal.

OCCAM does not output the axioms x � y, x+y � x, or,
x� 5, as each of these axioms enables item (13) to be com-
putable.

Example 15 We now let T consist of the previously learned
axiom (14) and consider the IP given by

(2+3, 3+2, 1) (15)
(1+3, 3+2, -1). (16)

Then, OCCAM returns the axiom
x+y� y+x. (17)

Thus, OCCAM finds the commutativity axiom for + in this
case. Item (15) is computable in T +∆ as follows:

2+3 (17)
3+2

However, item (16) is not computable in T +∆, as can be seen
by inspecting the axioms of T +∆.

Example 16 Now, the learning process can be continued in
a similar manner so that the agent also learns the table entry
2+2� 4 and the associative law (x+y)+z� x+(y+z). Then,
the agent is ready to learn ordinary multiplication from exam-
ples. In fact, suppose that the IP is given by

(g(2,1), 2, 1) (18)
(g(2,2), 4, 1) (19)
(g(2,3), 2, -1). (20)

Then, ∆ consists of the following axioms:

g(x,0)� 0 (21)
g(x,y+1)� g(x,y) + x. (22)

Thus, in this case, OCCAM finds the ordinary recursive def-
inition of multiplication in terms of addition. Item (19) is
computable in T +∆ as follows:

g(2,2)
(22)

g(2,1)+2
(22)

(g(2,0)+2)+2
(x+y)+z� x+(y+z)

g(2,0)+(2+2)
2+2� 4

g(2,0)+4
(21)

0+4 (17)
4+0 (14)
4

Example 17 Continuing with the theory T that consists of
the axioms that the agent has learned thus far, it can now ex-
trapolate number sequences, such as 8, 11, 14. In fact, let
the IP be given by

(f(0), 8, 1) (23)
(f(1), 11, 1) (24)
(f(2), 14, 1) (25)
(f(0), 0, -1). (26)

Then, ∆ is the following theory:

f(0)� 8 (27)
f(x+1)� f(x) + 3. (28)

Thus, in this case, OCCAM finds a pattern in the number se-
quence. Item (25) is computable as follows:

f(2)
(28)

f(1) + 3
(28)

(f(0) + 3) + 3
(x+y)+z� x+(y+z)

f(0) + (3 + 3)
3+3� 6

f(0) + 6
(27)

8 + 6
8+6� 14

14

We can now use this function to compute the value of f(3)
and thus obtain the next number of the sequence 17. The same
method can be applied to extrapolation and interpolation
problems involving arbitrary number sequences. From earlier
work, we know that a fixed agent similar to the one consid-
ered in this example can perform above the average human
level with respect to previously unseen IQ tests (Strannegård,
Nizamani, et al., 2013).

Conclusions
We have presented a multi-domain computational model for
symbolic reasoning with bounded cognitive resources that
supports reasoning by deduction, induction, and abduction.

The model differs from mainstream models that are used
in logic, computer science, and cognitive psychology by in-
corporating a unilateral model of human cognition that serves
the purpose of reducing the computational complexity, while
keeping performance at the human level or above. Thus we
aim to tackle the combinatorial explosion problem that fre-
quently arises in inductive logic programming, automatic the-
orem proving, and grammar induction.

The model is broad because it can learn entirely new do-
mains of symbolic reasoning by starting with an empty the-
ory. This was shown for simple versions of English gram-
mar and arithmetic. The model also has depth, as it performs
above the average human level on several domains, includ-
ing number sequence extrapolation and tautology identifica-
tion. We believe that the computational complexity of the
model could be improved considerably by adding some nat-
ural heuristics. More research is needed to determine the
model’s generality, scalability, and sensitivity to training data
variation.

Acknowledgement
This research was supported by The Swedish Research Coun-
cil (grant 421-2012-1000).

References
Adler, J. E., & Rips, L. J. (2008). Reasoning: Studies of Hu-

man Inference and its Foundations. Cambridge University
Press.

Anderson, J. R., & Lebiere, C. (1998). The atomic compo-
nents of thought. Mahwah, N.J.: Lawrence Erlbaum.

Bezem, M., Klop, J. W., & de Vrijer, R. (2003). Term Rewrit-
ing Systems. Cambridge University Press.

Clark, A., & Lappin, S. (2010). Computational Learning
Theory and Language Acquisition. Philosophy of linguis-
tics.

Ferri-Ramı́rez, C., Hernández-Orallo, J., & Ramı́rez-
Quintana, M. J. (2001). Incremental Learning of Func-
tional Logic Programs. In Functional and Logic Program-
ming. Springer.

Garcez, A. S. d., & Lamb, L. C. (2011). Cognitive Algo-
rithms and Systems: Reasoning and Knowledge Represen-
tation. In V. Cutsuridis, A. Hussain, & J. G. Taylor (Eds.),
Perception-Action Cycle. Springer New York.

Gobet, F., & Lane, P. (2010). The CHREST Architecture of
Cognition: the Role of Perception in General Intelligence.
In Artificial General Intelligence 2010, Lugano, Switzer-
land. Atlantis Press.

Katayama, S. (2005). Systematic search for lambda expres-
sions. Trends in functional programming, 6, 111–126.

Kitzelmann, E. (2010). Inductive Programming: A Survey of
Program Synthesis Techniques. In Approaches and Appli-
cations of Inductive Programming. Springer.

Kosslyn, S. M., & Smith, E. E. (2006). Cognitive Psychology:
Mind and Brain. Upper Saddle River, NJ: Prentice-Hall.

Kühnberger, K.-U., Rudolph, S., & Wang, P. (2013). Pro-
ceedings of the 6th International Conference on Artificial
General Intelligence, Beijing, China (Vol. 7999). Springer.

Laird, J., Newell, A., & Rosenbloom, P. (1987). Soar: An Ar-
chitecture for General Intelligence. Artificial Intelligence,
33(3), 1–64.

Li, M., & Vitányi, P. M. B. (2009). An introduction to Kol-
mogorov complexity and its applications. Springer.

Muggleton, S., & Chen, J. (2012). Guest editorial: special is-
sue on Inductive Logic Programming (ILP 2011). Machine
Learning, 1–2.

Olsson, J. R. (1998). The art of writing specifications for the
ADATE automatic programming system. In 3rd Annual
Conference on Genetic Programming (pp. 278–283).

Peirce, C. (1958). Collected Papers of Charles Sanders
Peirce. Belknap Press of Harvard University Press.

Piaget, J. (1937). La construction du réel chez l’enfant.
Delachaux & Niestlé.

Robinson, J. A., & Voronkov, A. (2001). Handbook of Auto-
mated Reasoning. Elsevier.

Strannegård, C., Engström, F., Nizamani, A. R., & Rips, L.
(2013). Reasoning About Truth in First-Order Logic. Jour-
nal of Logic, Language and Information, 1–23.

Strannegård, C., Nizamani, A. R., Sjöberg, A., & Engström,
F. (2013). Bounded Kolmogorov complexity based on cog-
nitive models. In K. U. Kühnberger, S. Rudolph, & P. Wang
(Eds.), Proceedings of AGI 2013, Beijing, China. Springer.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman,
N. D. (2011). How to Grow a Mind: Statistics, Structure,
and Abstraction. Science, 331(6022), 1279–1285.

Toms, M., Morris, N., & Ward, D. (1993). Working Mem-
ory and Conditional Reasoning. The Quarterly Journal of
Experimental Psychology, 46(4), 679–699.

Troelstra, A., & Schwichtenberg, H. (2000). Basic Proof
Theory. Cambridge University Press.

Veness, J., Ng, K. S., Hutter, M., Uther, W., & Silver, D.
(2011). A Monte-Carlo AIXI approximation. Journal of
Artificial Intelligence Research, 40(1), 95–142.

Wang, P. (2007). From NARS to a Thinking Machine. In
Proceedings of the 2007 Conference on Artificial General
Intelligence (pp. 75–93). Amsterdam: IOS Press.

Wang, P., & Goertzel, B. (2012). Theoretical Foundations of
Artificial General Intelligence. Atlantis Press.

