
A NEW PROOF OF TANAKA’S THEOREM

ALI ENAYAT

Abstract. We present a new proof of a theorem of Kazuyuki Tanaka,
which states that every countable nonstandard model of WKL0 has a
non-trivial self-embedding onto a proper initial segment of itself. More-
over, the new proof has an ingredient that yields a novel characterization
of models of WKL0 among countable models of RCA0.

1. Introduction

Friedman [6, Theorem 4.4] unveiled the striking result that every count-
able nonstandard model of PA is isomorphic to a proper initial segment of
itself. One of the earliest refinements of Friedman’s theorem is due to Lessan
[10], who showed that a countable model M of ΠPA

2 (the Π2-consequences
of PA) is isomorphic to a proper initial segment of itself iff M is 1-tall and
1-extendable. Here ‘M is 1-tall’ means that the set of Σ1-definable elements
ofM is not cofinal inM, and ‘M is 1-extendable’ means that there is an end
extension M∗ of M that satisfies I∆0 and ThΣ1(M) = ThΣ1(M∗). Dim-
itracopoulos and Paris [4], in turn, strengthened Lessan’s aforementioned
result by weakening ΠPA

2 to I∆0 + BΣ1 + exp, and they used this strength-
ening to show that every countable nonstandard model of IΣ1 is isomorphic
to a proper initial segment of itself. This strengthening of Friedman’s the-
orem was independently established, through a different line of reasoning,
by Ressayre [12] in the following stronger form indicated in the ‘moreover
clause’ (see [8, Ch. IV, Sec. 2(d)] for a detailed exposition of Ressayre’s
proof).

1.1. Theorem. Every countable nonstandard model M of IΣ1 is iso-
morphic to a proper initial segment of itself. Moreover, for any prescribed
a ∈ M , there is a proper initial segment I of M, and an isomorphism
φa :M→ I such that φa(m) = m for all m ≤ a.1

The point of departure for this paper is a theorem of Tanaka [14] that
extends Theorem 1.1 to models of the fragment WKL0 of second order arith-
metic. Models of WKL0 are two-sorted structures of the form (M,A), where
M = (M,+, ·, <, 0, 1) |= IΣ1, and A is a family of subsets of M such that
(M,A) satisfies the following three conditions:

1Ressayre also noted that the existence of such a family of embeddings {φa : a ∈M}
characterizes models of IΣ1 among countable models of I∆0.
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(1) Induction for Σ0
1 formulae;

(2) Comprehension for ∆0
1-formulae; and

(3) Weak König’s Lemma: every infinite subtree of the full binary tree has
an infinite branch.

It is well known that every countable model M of IΣ1 can be expanded
to a model (M,A) |= WKL0. This important result is due independently
to Harrington and Ratajczyk; see [13, Lemma IX.1.8 + Theorem IX.2.1].
Therefore Theorem 1.2 below is a strengthening of Theorem 1.1.

1.2. Theorem. (Tanaka) Every countable nonstandard model (M,A) of
WKL0 is isomorphic to a proper initial segment I of itself in the sense that
there is an isomorphism φ : M → I such that φ induces an isomorphism

φ̂ : (M,A) → (I,A � I). Moreover, given any prescribed a ∈ M , there is
some I and φ as above such that φa(m) = m for all m ≤ a.

In Theorem 1.2, A � I := {A ∩ I : A ∈ A}, and the isomorphism φ̂ induced

by φ is defined by: φ̂(m) = φ(m) for m ∈M and φ̂(A) = {φ(a) : a ∈ A} for
A ∈ A. Tanaka’s proof of Theorem 1.2 in [14] is based on an elaboration of
Ressayre’s proof of Theorem 1.1, which uses game-theoretic ideas.

Tanaka’s motivation for his result, as pointed out in [14, Sec. 3], was the
development of non-standard methods within the confines of the frugal sys-
tem WKL0. A remarkable application of Tanaka’s result appears in the work
of Tanaka and Yamazaki [15], where it is used to show that the construc-
tion of the Haar measure (over compact groups) can be implemented within
WKL0 via a detour through nonstandard models. This is in contrast to the
previously known constructions of the Haar measure whose implementation
can only be accommodated within the stronger fragment ACA0 of second
order arithmetic. As it turns out, the known applications of Tanaka’s theo-
rem in the development of nonstandard methods do not need the full force
of Theorem 1.2, but rather they rely on the following immediate corollary
of the first assertion of Theorem 1.2.

1.3. Corollary. Every countable nonstandard model (M,A) of WKL0

has an extension (M∗,A∗) to a model of WKL0 such that M∗ properly end
extends M, and A = A∗ �M.

In this paper we present a new proof of the first assertion of Tanaka’s
Theorem (in Section 3). As shown in Theorem 3.6 our work also yields a
new characterization of models of WKL0 among countable models of RCA0.
Before presenting the new proof, we first need to discuss a self-embedding
theorem (in Section 2) that plays a key role in our new proof. As indicated
in Remark 3.4, our method can be extended to also establish the ‘moreover’
clause of Tanaka’s Theorem. Further applications of the methodology of our
proof of Theorem 1.2 will be presented in [5].
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2. The Solovay-Paris Self-Embedding Theorem

Paris [11, Theorem 4] showed that every countable recursively saturated
model of I∆0+BΣ1 is isomorphic to a proper initial segment of itself, a result
that is described by Paris as being ‘implicit’ in an (unpublished) paper of
Solovay.2 This result of Solovay and Paris can be fine-tuned as in Theorem
2.1 below, following the strategy (with n = 0) of [9, Theorem 12.3]. The
details of the proof of Theorem 2.1 have been worked out by Cornaros in [3,
Corollary 11] and Yokoyama [16, Lemma 1.3].

2.1. Theorem. Suppose N is a countable model of I∆0 + BΣ1 that is
recursively saturated, and there are a < b in N such that for every ∆0-
formula δ(x, y) we have:

(∗) N |= ∃y δ(a, y) =⇒ N |= ∃y < b δ(a, y).

There is an isomorphism φ : N → I, where I is an initial segment of N
with a < I < b, and φ(a) = a.

2.2. Remark. Condition (∗) of Theorem 2.1 can be rephrased as

f(a) < b for all partial N -recursive functions f ,

with the understanding that a partial function f from N to N is a partial
N -recursive function iff the graph of f is definable in N by a parameter-free
Σ1-formula.

3. Proof of Tanaka’s Theorem

The goal of this section is to show that every countable nonstandard
model (M,A) of WKL0 is isomorphic to a proper initial segment of itself.
In Remark 3.4 we will comment on how our method can be adapted so as
to also establish the ‘moreover clause’ of Tanaka’s Theorem. Our proof has
three stages:

• Stage 1: Given a countable nonstandard model (M,A) of WKL0,
and a prescribed a ∈ M in this stage we use the ‘muscles’ of IΣ1 in
the form of the strong Σ1-collection [8, Theorem 2.23, p.68] to locate
an element b in M such that f(a) < b for all partial M-recursive
functions f (as defined in Remark 2.2).

• Stage 2 Outline: We build an end extension N of M such that the
following conditions hold:

(I) N |= I∆0 + BΣ1;
(II) N is recursively saturated;
(III) f(a) < b for all partial N -recursive functions; and
(IV) SSyM (N ) = A.

2Solovay’s paper (as listed in [11]) is entitled Cuts in models of Peano. We have not
been able to obtain a copy of this paper.
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• Stage 3 Outline: We use Theorem 2.1 to embed N onto a proper
initial segment J ofM. By elementary considerations, this will yield
a proper cut I of J with (M,A) ∼= (I,A � I).

We now proceed to flesh out the above outlines for the second and third
stages.

Stage 2 Details

This stage of the proof can be summarized into a theorem in its own
right (Theorem 3.2).3 Before stating the theorem, we need the following
definitions.

3.1. Definition. Suppose M (end N , where M |= IΣ1 and N |= I∆0.

(a) ∈Ack is Ackermann’s membership relation [8, 1.31, p.38] based on binary
expansions4.

(b) Suppose c ∈ N and 2c exists in N . cE,N is the ‘∈Ack-extension’ of c in
N , i.e.,

cE,N := {i ∈ N : N |= i ∈Ack c}.

Note that since exp holds inM, and N satisfies I∆0, we can fix some element
k ∈ N\M and apply ∆0-overspill to the ∆0-formula

δ(x) := ∃y < k (2x = y)

to be assured of the existence of an element c ∈ N\M for which 2c exists in
N .

(c) SSyM (N ) is the M -standard system of N , which is defined as the col-
lection of subsets of M that are of the form M ∩ cE,N for some c ∈ N such
that 2c exists in N .

(d) Suppose b ∈ M, and let M≤b := {a ∈ M :M |= a ≤ b}. We say that N
is a conservative extension of M with respect to Π1,≤b-sentences iff for all
Π1-formulae π(x0, · · ·, xn−1) in the language of arithmetic with the displayed
free variables, and for all a0, · · ·, an−1 in M≤b we have:

M |= π(a0, · · ·, an−1) iff N |= π(a0, · · ·, an−1).

3We are grateful to Keita Yokoyama for pointing out that Theorem 3.2 is of sufficient
interest to be explicitly stated.

4Recall: m ∈Ack n is defined as “the m-th digit of the binary expansion of n is 1”. It
is well known that, provably in I∆0, if 2n exists then (a) n can be written (uniquely) as a
sum of powers of 2 (and hence n has a well-defined binary expansion), and (b) m ∈Ack n
iff 2 -

⌊
m2−n

⌋
.



A NEW PROOF OF TANAKA’S THEOREM 5

The following theorem supports the existence of the model N as in the
outline of Stage 2. Note that condition (III) of the outline of Stage 2 is
implied by the last clause of Theorem 3.2 since if δ is any ∆0-formula of
standard length, and a and b are constants representing a and b, then the
sentence

∃y δ(a, y)→ ∃y < b δ(a, y)

is a Π1,≤b-sentence .

3.2. Theorem. Let (M,A) be a countable model of WKL0 and let b ∈
M . Then M has a recursively saturated proper end extension N satisfying
I∆0 + BΣ1 such that SSyM (N ) = A, and N is a conservative extension of
M with respect to Π1,≤b-sentences.

Proof: Let TrueMΠ1
be the set of ‘true’ Π1-sentences with (parameters in

M), as computed inM.5 Fix some nonstandard n∗ ∈M with n∗ >> b, e.g.,
n∗ = supexp(b) is more than sufficient6. Since M satisfies IΣ1 and TrueMΠ1

has a Π1-definition within M, there is some element c ∈ M that codes the
fragment of TrueMΠ1

consisting of elements of TrueMΠ1
that are below n∗, i.e.,

cE,M = {m ∈M : m ∈ TrueMΠ1
and m < n∗},

We observe that cE,M contains all Π1,≤b-sentences that hold in M. Within
M, we define the ‘theory’ T0 by:

T0 := I∆0 + BΣ1 + {m : m ∈ TrueΠ1 and m < n∗}.

At this point we recall a result of Clote-Hájek-Paris [2] that asserts:

(#) IΣ1 ` Con(I∆0 + BΣ1 + TrueΠ1).

In light of (#), we have:

(∗) M |= Con(T0).

It is clear that T0 has a ∆1-definition inM (note: here we are not claiming
anything about the quantifier complexity of each member of T0). Hence by
∆0

1-comprehension available in WKL0 we also have:

(∗∗) T0 ∈ A
We wish to build a certain chain 〈Nn : n ∈ ω〉 of structures such that the
elementary diagram of each (Nn, a)a∈Nn can be computed by (M,A) as some
En ∈ A. Note that En would be replete with sentences of nonstandard
length. Enumerate A as 〈An : n ∈ ω〉 . Our official requirements for the
sequence 〈Nn : n ∈ ω〉 is that for each n ∈ ω the following three conditions
are satisfied:

5It is well-known that IΣ1 has enough power to meaningfully define TrueMΠ1
(see, e.g.,

[8, Theorem 1.75, p.59]). Note that TrueMΠ1
need not be in A.

6Here supexp(b) is an exponential stack of length b + 1, where the top entry is b, and
the rest of the entries consist of 2’s.
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(1) T0 ⊆ En ∈ A (in particular: Nn is recursively saturated).
(2) M (end Nn ≺ Nn+1.
(3) An ∈ SSyM (Nn+1).

We now sketch the recursive construction of the desired chain of models. To
begin with, we invoke (∗), (∗∗), and the completeness theorem for first order
logic (that is available in WKL0, see [13, Theorem IV.3.3]) to get hold of N0

and E0 satisfying condition (1). To define Nn+1, we assume that we have
Nn satisfying (1). Next, consider the following ‘theory’ Tn+1 defined within
(M,A) :

Tn+1 := En +
{
t ∈Ack d : t ∈ An

}
+
{
t /∈Ack d : t /∈ An

}
,

where d is a new constant symbol, and t is the numeral representing t in the
ambient model M. Note that Tn+1 belongs to A since A is a Turing ideal
and Tn+1 is Turing reducible to the join of En and An. It is easy to see
that Tn+1 is consistent in the sense of (M,A) since (M,A) can verify that
Tn+1 is finitely interpretable in Nn. Using the completeness theorem within
(M,A) this allows us to get hold of the desired Nn+1 and En+1 satisfying
(1), (2), and (3). The recursive saturation of Nn+1 follows immediately from
(1), using a well known over-spill argument. Let

N :=
⋃
n∈ω
Nn.

It is evident that N satisfies the properties listed in Theorem 3.2. �

3.3. Remark. The result of Clote-Hájek-Paris that was invoked in the
above proof was further extended by Beklemishev, who showed the con-
sistency of I∆0 + BΣ1 + TrueΠ2 within IΣ1 (n = 1 of [1, Theorem 5.1]).
Beklemishev’s result shows that condition (∗) of Stage (2) can be strength-
ened to assert thatM |= Con(T0 +PRA), where PRA is the scheme asserting
the totality of all primitive recursive functions (recall that the provable re-
cursive functions of IΣ1 are precisely the primitive recursive functions). This
has the pleasant consequence that the model N constructed in Stage 2 can
be required to satisfy PRA, and a fortiori : exp.

Stage 3 Details

Thanks to properties (I), (II), and (III) of the outline of Stage 2, we can
invoke Theorem 2.1 to get hold of a self-embedding φ of N onto a cut J
with a ∈ J < b. The image I of M under φ is an initial segment of M and

I < J < M .

Let B := {φ̂(A) : A ∈ A}. It is clear that φ induces an isomorphism

φ̂ : (M,A)→ (I,B),
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Coupled with the fact that SSyM (N ) = A, this implies A � I = B by
elementary considerations. This concludes the proof of (the first clause) of
Tanaka’s Theorem. �

3.4. Remark. The ‘moreover’ clause of Tanaka’s Theorem can be estab-
lished by the following variations of the above proof: in Stage 1, given a
prescribed a ∈ M , let a∗ = supexp(a) and use strong Σ1-collection to find
b ∈M such that:

(1) For every ∆0-formula δ(x, y), and every i ≤ a∗,
M |= ∃y δ(i, y) =⇒M |= ∃y < b δ(i, y).

Let I be the smallest cut ofM that contains a and is closed under exponen-
tiation, i.e., I := {m ∈ M : ∃n < ω such that m < an}, where 〈an : n < ω〉
is given by a0 := a, and an+1 = 2an . In light of (1), we have:

(2) For every ∆0-formula δ(x, y), and every i ∈ I,

M |= ∃y δ(i, y) =⇒M |= ∃y < b δ(i, y).

Then in Stage 3, we use (2) in conjunction with the following refinement of
Theorem 2.1.

3.5. Theorem [5]. Suppose N is a countable recursively saturated model
of I∆0 + BΣ1, I is a cut of N that is closed under exponentiation, and for
some b in N , the following holds for all ∆0-formulas δ(x, y):

∀i ∈ I (N |= ∃y δ(i, y) =⇒ N |= ∃y < b δ(i, y)) .

There is an isomorphism φ : N → J , where J is an initial segment of N
with J < b, and φ(m) = m for all m ∈ I.
The proof of Theorem 3.5 is obtained by dovetailing the proof of Theorem
2.1 with an old argument of Hájek and Pudlák in [7, Appendix].

As pointed out by Keita Yokoyama, the results of this paper, coupled with an
observation of Tin Lok Wong, yield the following characterization of models
of WKL0 among countable models of RCA0.

3.6. Theorem. Let (M,A) be a countable model of RCA0. The following
are equivalent :

(1) (M,A) is a model of WKL0.

(2) For every b ∈M there exists a recursively saturated proper end extension
N of M such that N |= I∆0 + BΣ1 + PRA, SSyM (N ) = A, and N is a
conservative extension of M with respect to Π1,≤b−sentences.

(3) For every b ∈ M there is a proper initial segment I of M such that
(M,A) is isomorphic to (I,A � I) via an isomorphism that pointwise fixes
M≤b.

Proof. (1)⇒ (2) is justified by Theorem 3.2 and Remark 3.3, and (2)⇒ (3)
follows from Theorem 3.5. As pointed out by Tin-Lok Wong, (3) ⇒ (1)
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follows from the same line of argument as in Ressayre’s characterization of
models of IΣ1 among countable models of I∆0 that is mentioned in footnote
1. �
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