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criticism.18 We shall only concern ourselves with the static, equi-

librium case in this paper.)

The natural evolution of research into the dependence of the

static dielectric constant on the electrolyte concentration has cul-

minated in more advanced models in the present day. For in-

stance, Levy et al.19 write down field equations for a system of

ions and dipoles that yield approximate analytical solutions for

the local dielectric constant in the shell of an ion, and by exten-

sion the dielectric decrement of the solution. In the recent anal-

ysis by Gavish and Promislow20, the ordering of water dipoles

in the microfield stemming from an ensemble of ions is modeled

at finite temperature. The thermal average of the water dipoles

in the field of a single ion is computed analytically and under

some simplifying assumptions the effect of the finite concentra-

tion of ions is taken into account. They too arrive at an analytical

prediction of the dielectric decrement using only a single fitting

parameter. Both Levy et al.19 and Gavish & Promislow20 find

good agreement with the experimental findings of the dielectric

decrement even in the nonlinear regime for their respective ex-

pressions.

One may expect the dielectric decrement to be a consequence

of the low polarizability of the ions in a picture where each indi-

vidual ion and water molecule constitute a microphase analogous

with, but physically distinct from, the model of Haggis et al.14

This view, formalized by Sack,21,22 is supported by the typically

very low dielectric constants of the corresponding ionic crystals.

However, even if the ions were completely unpolarizable, typi-

cally their partial molar volumes in dilute aqueous solutions are

negative. Therefore, their dissolution should lead to an initial

increase of the dielectric constant, since it is very accurately pro-

portional to the density.23 Moreover, if this were the only effect,

the dielectric decrement would not deviate from linearity before

the molecular volume of the solute approaches that of the crystal,

which is likely to be at a point far past the solubility limit. This is

why the reason just discussed in the preceding paragraphs is gen-

erally accepted: viz. that the hydration shell of each ion exhibits

a greater reluctance to polarize, and hence a weaker dielectric re-

sponse, than bulk water. When the ion concentration increases to

the point where the hydration shells start to overlap, one expects

a saturation of the dielectric decrement as a natural consequence

of the ensuing geometrical restrictions. The “hydrated size” of an

ion is likely much larger than the “bare size” calculated from its

crystal structure so that this overlap effect occurs at concentra-

tions below the solubility limit.

Here we wish to shed some light upon the issue from an angle

that has so far not been covered, namely, the role of the electro-

static ion screening in reducing the dielectric constant of the solu-

tion. We employ arguments from the the dressed-ion theory24,25

to derive an expression for the dielectric constant as a function of

the ionic strength. Interestingly, we will find that also the elec-

trostatic screening through ion correlations, manifested through

a reduction of the magnitude of the apparent ionic charge, con-

tributes to the dielectric decrement. For the benefit of the reader

unfamiliar with this theory, a brief overview is given next. After

that, we will present the dielectric model and the resulting equa-

tion for the salt-dependence of the dielectric constant.

2 Dressed-ion theory

The following presentation is not meant as a rigorous proof of the

dressed-ion theory. The interested reader is advised to consult the

original reference.24 Here we give the main results with the im-

portant implications for the present paper. Most of the analysis

will not rely on the fundamental details of the dressed-ion the-

ory (which require extensive numerical simulations to apply), but

rather borrow the physical concepts that it introduces. In essence,

the dressed-ion theory can be considered a reformulation of the

Ornstein-Zernike equation, which we will not attempt to solve.

We consider a set of ions with charges {qi} and concentrations

{ni} and some unspecified but short-range repulsion to ensure

thermodynamic stability at inverse thermodynamic temperature

β . It assumed that the system is wholly electroneutral, that is

∑
i

niqi = 0 (1)

The charge density at a distance r from an arbitrary ion i is given

by,

ρi(r) = ∑
j

n jq je
−βwi j(r) (2)

where wi j is the potential of mean force between ions i and j. The

function wi j(r) is a complicated function of the system parameters

and is generally not expressible in closed form. It describes all of

the ion-ion correlations due to the interactions among the ions

other than i among themselves. Poisson’s equation provides a

condition on eq. 2, viz.,

ε0∇2ψi(r) =−ρi(r) (3)

where ε0 is the vacuum permittivity and ψi(r) is the electrostatic

potential at a distance r from i; but solving this equation still

requires knowledge of the wi j(r) function.

In dressed-ion theory,24 the effect of the ion-ion correlations

on the distribution functions are formally taken into account by

replacing the Coulomb potential between ions with the “dressed-

ion” potential. The electrostatic scalar potential due to ion i at a

distance r is then written

ψi(r) =
∫

dr
′ρ∗

i (r
′)φ∗

Coul(|r− r
′|) (4)

where ρ∗
i is the “nonlinear part” of the charge density around ion

i and φ∗
Coul is the “screened Coulomb potential”. The “nonlinear

part” of the charge density is simply the error term that arises

when linearizing eq. 2 for the charge density. Accordingly, ρ∗
i is

less appreciable when ion correlations are weaker. However, the

strong spatial nonlinearity in the charge density of a point ion

means that

ρ∗
i (0) = δ (r) (5)

where δ (r) is the three-dimensional Dirac delta-function, regard-

less of the presence of correlations. The restriction of eq. 3 is

enforced but unlike the Debye-Hückel approximation, wi j is not

replaced by the Coulomb pair potential, instead it is given by

wi j(r) =
∫

dr
′ψi(r

′)ρ∗
j (|r− r

′|) (6)
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Although we will not make use of it, we note that the screened

Coulomb potential satisfies,25

−ε0∇2φ∗
Coul(r)−

∫

dr
′φ∗

Coul(r
′)χ∗(|r− r

′|) = δ (r) (7)

where

χ∗(r) =−β ∑
j

n jq jρ
∗
j (r) (8)

an entity that Kjellander25 calls the “polarization response func-

tion”. The integral in eq. 7 has units of charge density and the

function χ∗ may be thought of as “inducing” this charge density

in response to the Coulombic field. For our purposes, we note

that it includes no dipolar contributions from the solvent, a point

that will be important in the later development.

The most important quantity in our treatment, apart from the

function χ∗(r), will be the so-called “dressed-ion charge” defined

for ion i by

q∗i =
∫

drρ∗
i (r) (9)

which should be contrasted with the “bare-ion charge” qi. The

subtraction of the “linear part” of ρi from eq. 9 ensures that the

integration is not trivially zero due to charge neutrality. At high

temperature and/or low ion concentration, it follows from eq. 5

that q∗i → qi, and the deviation of q∗i from qi is a direct conse-

quence of the ion-ion correlations in the system. The magnitude

of q∗i is typically (except under very special circumstances which

do not arise at low ion concentrations) smaller than that of qi be-

cause of the dominance of counterions over coions in the “ionic

atmosphere” around i. It is also important to note that the ions

are themselves unpolarizable and so have a fixed charge density

as per eq. 5.

3 Dielectric model

3.1 General considerations

In experiments, the static dielectric constant is defined as,

εr =
C

C0
(10)

where C0 is the capacitance of a reference vacuum capacitor and

C is the capacitance of a capacitor with the vacuum replaced by a

medium with dielectric constant εr. This capacitance is—however

it is measured— always measured in response to an external elec-

tric perturbation.

To avoid unnecessary confusion, it may help to clarify the

physics of the arguments to be presented before we continue. Let

us make a distinction between “bound” and “free” charges as fol-

lows: bound charges are trapped in a potential well and return

to their original location after the external electric field that dis-

placed them is removed; free charges do not. Hence, free charges

are those that carry current in a conductor and bound charges

are those responsible for the polarization in a dielectric. This dis-

tinction is phenomenological as it is clear that for any physical

potential (i. e., one that is bounded) all charges are free at finite

temperature after infinite time. However, experiments are always

conducted over a finite time. Strong ion associations, in the sense

of the Bjerrum ion pair, clearly affect the dielectric response of

the concentrated electrolyte solution, in that the ion pair might

be sufficiently strongly bound to withstand dissociation by the

external field during the time period of the measurement. In this

case, the pair behaves like an inducible dipole rather than two

free charges.

3.2 Dielectric constant

Consider now the scalar electrostatic potential Ψ(r) at a point r

inside the system. Let us assume that this region inside is sepa-

rated physically from the outside whence originates an external

potential Ψext(r).‡ If this perturbation were not an external one,

but rather a perturbation of the intermolecular potential, the to-

tal force in the fluid would vanish (Newton’s third law would be

satisfied) at all times, even out of equilibrium. The perturbation

could therefore not induce any macroscopic currents. After a re-

laxation period, an equilibrium state would be guaranteed, and

we could write the total equilibrium potential25

Ψ(r) = Ψext(r)+
∫

dr
′ρpol(r′)φCoul(|r− r

′|) (11)

where φCoul is the Coulomb potential, and take a linear consti-

tutive equation to relate ρpol(r) (the bound charge density) with

Ψ(r),25

ρpol(r) =
∫

dr
′Ψ(r′)χ∗(|r− r

′|) (12)

Inserting eq. 12 into eq. 11 and Fourier transforming, we would

then have the dielectric constant (at any spatial wavelength) from

the ratio (spatial Fourier transforms denoted by a tilde),25

ε̃(k) =
Ψ̃ext(k)

Ψ̃(k)
(13)

although this quantity would more correctly be denoted a “screen-

ing function” rather than “dielectric function” since it would not

derive in response to an external perturbation.

However, since the perturbation to compute the actual dielec-

tric constant is external, force symmetry is broken in the fluid, and

there will be nonequilibrium currents. If the electric conductivity,

σ , is nonzero, these will never disappear as long as Ψext is present,

and thermodynamic equilibrium will not exist. This is because the

system is infinite and lacks boundaries where charge can accrue;

or the boundaries act as current source and sink. This conduc-

tion current is proportional to σ∇Ψext and would, for a perfect

conductor, be the only response to the perturbation. In this case,

there is no microscopic polarization, which implies ρpol(r)≡ 0 in-

stead of eq. (12). In actuality, the system may however exhibit

some dielectric response, so that a more justifiable Ansatz for the

constitutive equation is

ρpol(r) =
∫

dr
′[Ψ(r′)−λΨext(r′)]χ∗(|r− r

′|) (14)

where the integrand represents only the part of the response

which contributes to polarizing the fluid, after subtracting the

part which is proportional to the induced current (only bound

‡Both Ψ and Ψext are presumed to go to zero far away from their source charges.
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charges contribute to ρpol). Here λ ∈ [0,1] is a parameter that

interpolates between the purely conducting (λ = 1) and purely

dielectric (λ = 0) cases, physically related to the balance be-

tween the free charge density (responsible for the current) and

the bound charge density (responsible for the polarization).

Then we obtain

Ψ̃(k) = Ψ̃ext(k)+ [Ψ̃(k)−λ Ψ̃ext(k)]χ̃∗(k)φ̃Coul(k) (15)

which implies the static dielectric constant,

ε̃(k) =
1− χ̃∗(k)φ̃Coul(k)

1−λ χ̃∗(k)φ̃Coul(k)
(16)

If λ 6= 0, this function remains finite as k → 0, in agreement with

experiment. In fact, λ is the reciprocal of the static dielectric

constant of the fluid: λ = 1/εr, a result which is physically condi-

tioned on σ > 0.

Since φ̃Coul(k) = 1/(ε0k2), neglecting the weak k-dependence of

χ̃∗(k) and expanding eq. (16) for small k, we have§

ε̃(k)−1 ≈ λ +
ε0(λ −1)k2

χ̃∗(0)
(17)

The reciprocal dielectric function is related to the charge-charge

structure factor S̃QQ,26

ε̃(k)−1 = 1−
β

ε0k2
S̃QQ(k;λ ) (18)

The limit of this equation is zero for k → 0 if all charges are in-

cluded in the structure factor. However, we wish to restrict it only

to the bound charges, in which case it should equal λ in the limit

k → 0. In order to bring consistency and only consider bound

charges, we define

S̃QQ(k;λ ) = (1−λ )S̃QQ(k;0) (19)

which is seen to ensure the correct limit to eq. 18. The next

higher-order term in k is also consistent with eq. 17, as seen from

the expansion of S̃QQ(k;λ ) for small k,25

S̃QQ(k;λ )

1−λ
=

ε0k2

β
−

ε2
0 k4

β 2

(

∑
i

niqiq
∗
i

)−1

+ . . . (20)

The consistency of eqs 17 and 18 mean that they impose no

constraints on λ . Let us for the moment assume that the dielectric

constant is only weakly dependent on the ion concentration. In

this case, we may let ∑ni → 0, so that λ → 0 and q∗i → qi, in either

one of the two equations and they should both agree as k → 0

as long as they are not evaluated at values of the ionic strength

that differ too much. We may then determine λ by matching

coefficients between eqs 17 and 18, and we obtain

λ = ε−1
r = 1− I−1 ∑

i

niqiq
∗
i (21)

§ For length scales larger than the correlation length, the polarization response func-

tion quickly decays. This is not true of the Coulomb potential whose integral is

divergent.

where I = ∑i niq
2
i is the ionic strength and we have used the rela-

tion,

χ̃∗(0) =−β ∑
i

niqiq
∗
i (22)

apparent from eqs 8 and 9. In other words, by assuming that the

dielectric constant is a weak function of the ionic strength, we

somewhat inconsistenly find a concentration dependence. It is

important to stress that we obtain the same result independently

of which equation for which we choose the limit λ → 0. Eq. 21

provides the value of λ (and hence εr) that ensures consistency

between eqs 17 and 18 when one is evaluated at infinite dilution

and the other at a finite concentration.

Both eqs 17 and 21 erroneously predict an infinite dielectric

constant of the pure solvent. This error appears in the truncated

expansions.¶ In order to rectify it, we normalize eq. 21 by its

(infinite) pure solvent value to obtain in principle a finite limit of

unity for this ratio in this limit. Thus, we write

εr(I)
−1

εr(0)−1
= A(I)− I−1 ∑

i

niqiq
∗
i (23)

where A(I) is a function that fulfills A(0) = 2 as required by math-

ematical consistency. For I > 0, the right-hand side vanishes if

the dielectric constant of the pure solvent actually is infinite, but

this is the unphysical result that we want to avoid. For simplicity,

we take A = 2 as a constant, thereby rescaling the equation to an

appropriate range of values for all I that is assuredly appropriate

in the limit I → 0. Interestingly, this procedure leads to a limiting

value, in the opposite limit when I → ∞, of 1
2 εr(0) which coin-

cidentally turns out to be close to the high-concentration limit

found experimentally, whereas here it is a device to obtain the

correct limiting behavior in the dilute limit.

Eq. 23 constitutes the main result of this paper. However, it is

unwieldy to use as the dressed-ion charges are expensive to com-

pute, something which cannot be done by hand. To proceed and

obtain something usable, we therefore consider the limiting be-

havior of eq. 23 at low ionic strength. The electrostatic screening

causes |q∗i | to decrease with increasing ionic strength. At low ion

concentrations, we may expand q∗i in a truncated power series in

the ionic strength and write q∗i = qi − sgn(qi)aiI+ . . ., where ai > 0

is a constant. In this regime, eq. 23 hence simplifies to

εr(I)
−1 ≈ εr(0)

−1 (1+αI) (24)

where α > 0 is a system-specific constant.‖ This reproduces by

Taylor expansion to first order the empirical law of Hasted et al.6

The “excess polarization” of their model, corresponding to the

constant α, is thus seen to stem from the concentration behavior

of the dressed-ion charge. Unlike the original equation (eq. 23),

the high-concentration limiting value of εr is now zero. However,

that is far outside the range of the equation’s applicability.

A comparison with the experiments of Hasted et al.6 is given in

Fig. 1. The erroneous limiting behavior at high concentration is

¶ In eq. 16, χ̃∗(k)→ 0 as the ion concentration vanishes and so ε̃(0) remains finite.

‖ For a symmetric electrolyte ∑i qi = 0, q ≡ |qi| = |q j | for all i, j, α = |q|−1 ∑i ai. The

expression for α becomes more complicated in the general case.

4 | 1–6

Page 4 of 6Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
2 

D
ec

em
be

r 
20

16
. D

ow
nl

oa
de

d 
by

 C
ha

lm
er

s 
T

ek
ni

sk
a 

H
og

sk
ol

a 
on

 1
2/

12
/2

01
6 

18
:4

9:
46

. 

View Article Online
DOI: 10.1039/C6CP07515K

http://dx.doi.org/10.1039/c6cp07515k


 40

 45

 50

 55

 60

 65

 70

 75

 80

 0  1  2  3  4  5  6

ε
r

Normality

Exp.
Eq. 24
Eq. 25

Fig. 1 Static dielectric constant as a function of aqueous NaCl solution

normality. Experimental data taken from Refs 6 and 27. Full line

corresponds to least-squares fit of eq. 24; dashed line to fit of eq. 25.

apparent in the fit, although some nonlinearity is captured. The

complete expression in eq. 23 requires numerical simulation, but

on the hypothesis that the dressed-ion charge approaches a con-

stant value, we may write

εr(I)
−1 ≈ εr(0)

−1

(

2−
α ′

I

)

(25)

where α ′ is another (hypothethical) constant. A fit of this equa-

tion, hypothetically valid in the high-concentration regime, to the

last three experimental data points is shown by the dashed line in

Fig. 1. One should not hastily conclude from the bad quality of

the fit in this case that the assumption that the dressed-ion charge

becomes constant at high concentration is a poor one, because it

is also likely that the high-concentration limit has not actually

been fully reached.

4 Conclusion

In this paper, we have derived an equation relating the dielectric

constant of an electrolyte solution to its ionic strength. We have

shown how in the limit of low concentration, it reduces to the

empirical law found by Hasted et al.6 The physical origin of the

“excess polarization” lies in our model in the electrostatic screen-

ing caused by the ion-ion correlations which reduce the dressed-

ion charge magnitude from its infinite dilution value. The cor-

responding results in the Debye-Hückel theory indicate no effect

of the ion concentration on the dielectric constant (as is seen by

replacing q∗i by qi throughout). It is interesting to note that no

solvent contributions are necessary for the dielectric decrement.

This sets our model apart very particularly from the common ex-

planations14–16,19,20 that all crucially rely on the concept of the

hydration shell.

The objective has not been to obtain the most accurate predic-

tion of the dielectric decrement. This is a task that is best suited

for molecular simulations. Rather, I wanted to proved physical in-

sight into the dielectric decrement and to see to what extent sim-

ple physical assumptions could explain the phenomenon. In real-

ity, one expects the “excess polarization” constant α to have con-

tributions (of varying magnitude and sign) not only from the hy-

dration shell and from the intrinsic ion polarizability but also, as

in our derivation, from the ion-ion correlations. Treating the pa-

rameter α as a fitting parameter, as we have done for the sake of

expediency, naturally confounds all of these contributions. Their

separate magnitudes (to the extent that they can be decoupled)

could in principle be established in careful calculations that avoid

such an empirical reinterpretation. Nevertheless, the penultimate

empirical equation that we have derived somewhat surprisingly

captures both the linear regime at low ionic strength, as well as

part of the nonlinearity that appears at higher concentration, hint-

ing at a possible importance of the role of nonlocal electrostatics

in the dielectric decrement.

Just like no material is ever fully electrically insulating, it

should be clear that the primitive model electrolyte solution

should have the same dielectric constant as the medium. This

follows because at finite temperature, no ion pair has an infi-

nite lifetime and so all charges should be considered free. This

view has experimental support. The measurements by Barthel et

al.7 of the static dielectric constant of NaCl solutions were im-

proved upon by Buchner et al.8 who managed measurements at

about five times lower frequencies. The resulting value of the

static dielectric constant was also lower in their improved mea-

surements. However, the parameter λ that we have introduced is

phenomenological and should, strictly interpreted, be frequency

dependent. The question then remains how, for a given frequency,

the ion correlations reduce the dielectric constant. Although this

is expected according to the empirical inverse relation between

the dielectric constant and conductivity of materials13 – as it is

almost certain that increasing the ion concentration will increase

the conductivity at almost all frequencies – a more direct physi-

cal explanation could be that the screening of the ion charges (as

evidenced by the decrease of the magnitude of the dressed-ion

charges) lead to weaker “long-range” cohesiveness between the

ions, which offsets whatever gains there are in “short-range” ion

pairing of the Bjerrum type.
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