
Using Machine Learning to Design a Flexible LOC Counter

Miroslaw Ochodek∗, Miroslaw Staron†, Dominik Bargowski‡, Wilhelm Meding§, Regina Hebig¶
∗Poznan University of Technology, Poland

miroslaw.ochodek@cs.put.poznan.pl
†Chalmers — University of Gothenburg, Sweden

miroslaw.staron@gu.se
‡ Poznan University of Technology, Poland
dominik.bargowski@student.put.poznan.pl

§Ericsson AB, Sweden
wilhelm.meding@ericsson.com

¶Chalmers — University of Gothenburg, Sweden
regina.hebig@cse.gu.se

Abstract—Background: The results of counting the size of
programs in terms of Lines-of-Code (LOC) depends on the
rules used for counting (i.e. definition of which lines should
be counted). In the majority of the measurement tools, the
rules are statically coded in the tool and the users of the
measurement tools do not know which lines were counted and
which were not.

Goal: The goal of our research is to investigate how to use
machine learning to teach a measurement tool which lines
should be counted and which should not. Our interest is to
identify which parameters of the learning algorithm can be
used to classify lines to be counted.

Method: Our research is based on the design science
research methodology where we construct a measurement tool
based on machine learning and evaluate it based on open source
programs. As a training set, we use industry professionals to
classify which lines should be counted.

Results: The results show that classifying the lines as to be
counted or not has an average accuracy varying between 0.90
and 0.99 measured as Matthew’s Correlation Coefficient and
between 95% and nearly 100% measured as the percentage of
correctly classified lines.

Conclusions: Based on the results we conclude that using
machine learning algorithms as the core of modern measure-
ment instruments has a large potential and should be explored
further.

I. INTRODUCTION

Automated measuring instruments and measuring systems
in software engineering are often based on predefined algo-
rithms which count entities of specific kinds (or with specific
properties). If they are not based on predefined algorithms
then they provide a limited set of configuration parameters.
As the properties of the entities evolve and the measurement
needs evolve so do the measuring instruments. In practice,
this evolution causes maintenance effort for the companies.
In this paper, we explore the idea of using machine learning
as a means to cope with the problem of the evolution of the
measuring instruments. Instead of rewriting the code of the
measuring instruments, we can re-teach the machine learning
algorithm to change the way which the entities are counted.

In this paper, we address the problem of how to accurately
count lines of code without the need to define a complete
grammar for the programming language used. In particular,
our aim is to explore how to use machine learning algorithms
to find the classification rules for which lines should be
included. The first step of our research is to list a set of
potential features (characteristics) which can be used to train
the machine learning algorithms on how to classify lines of
code, thus our research question is:

Which features of lines of code can be used to train
machine learning algorithms when classifying lines of code
as included in counting?

Our research method is a design science research to
explore a set of potential features, design the prototype and
evaluate its applicability. The results from the evaluation
show that the accuracy of the method is very promising,
which means that there is a large potential in using machine
learning algorithms as the core of measurement instruments.
However, further experiments with ”worst-case” scenarios
are needed in order to understand the limitations of our
approach.

II. LINES OF CODE COUNTERS

In this paper we use the measure of Lines of Code (LOC)
as an object of the study as this measure is simple and easy
to conceptually link to the problems of teaching an algorithm
how to recognize the objects (lines) which should be counted
and which should not. The measure has been used in practice
since the 1950s and there is substantial body of research on
it, [2]. It is also used as an input variable to many prediction
models – e.g. the Constructive Cost Model (COCOMO) and
its newer versions [3].

LOC measure is often also called SLOC (Source Lines
of Code) as an acronym and has multiple variations, for
example:

1) Physical (Source) Lines of Code – measure of all lines,
including comments, but excluding blanks



2) Effective Lines of Code – measure of all lines, exclud-
ing: comments, blanks, standalone braces, parentheses.

3) Logical Lines of Code – measure of those lines which
form code statements.

III. MACHINE-LEARNING-BASED LOC COUNTER

We assume that a flexible LOC counter should be
programming-language agnostic. Therefore, if it is possible,
we do not want to rely upon any specific language-specific
parsers. We would like to treat the code as it was a plain
text and perform classification at the level of a single line of
code instead of block constructs. Such approach limits the
necessity to modify the code of the counter to apply it to a
new programming language.

A. Features

We consider two approaches to deriving features de-
scribing lines of code. In the first approach, the features
are defined a priori and extracted from the text either by
measuring the quantitative aspects of the text or checking
the occurrence of certain patterns. The currently supported
list of such features is presented in Table I. Although we
use regular expressions instead of language-specific parsers,
it seems clear that the features F05–F19 refer to constructs
known from programming languages. Consequently, such
approach is not fully programming-language agnostic. How-
ever, it is still based on the constructs (and keywords) that are
present in most of the modern programming languages. As
an alternative, we propose a method of automatic acquisition
of features based on the analysis of a code base.

The proposed approach is based on the frequency analysis
of tokens appearing in the code (so called bag-of-words ap-
proach). We tokenize each line in a file using white and spe-
cial characters: ()[]{}!@#$%ˆ&*-=;:’”\|‘˜,.<>/?. We also
preserve the split strings as tokens. We count the frequency
of occurrence of the tokens in each file and the whole code
base. We define two thresholds for accepting a token as a
candidate feature:

• min. frequency — the minimal number of occurrences
of the token in the code base;

• min. files covered — the minimal percentage of files
that have at least one occurrence of the token.

The thresholds allow us to filter out tokens that appear
frequently, but only in a small number of files (e.g., local
variables or API calls). We set the default values of the
thresholds based on our experience and trail and error to
25% for the minimum frequency and to 5 for the minimum
files covered. We observed that such settings allow us to suf-
ficiently eliminate tokens appearing only in a single module
or in a small number of files. However, we believe that using
a more systematic approach to tune these parameters could
still improve the results. Finally, we define a feature for each
candidate token meeting the thresholds as Fi: the number of
times the tokeni occurs in a line of code (Numeric).

Table I
THE LIST OF PREDEFINED FEATURES DESCRIBING A LINE OF CODE.

ID Name Type Description

F01 File
extension

Nominal The extension of the file (e.g.,
java, cpp, etc.)

F02 Full
length

Numeric The number of characters in the
line.

F03 Length Numeric The number of characters in the
line after removing all leading
and trailing white characters.

F04 Tokens Numeric The number of tokens in the line
(the line is split based on white
characters).

F05 Semicolons Numeric The number of semicolons in the
line.

F06 Comments Boolean The line includes any of //, /*, */
or after trimming starts with *.

F07 Assignments Numeric the number of single assignment
signs in the line (=).

F08 Brackets Numeric The number of brackets: (, )in
the line.

F09 Square
brackets

Numeric The number of square brackets:
[, ] in the line.

F10 Curly
brackets

Numeric The number of curly brackets: {,
} in the line.

F11 Class Boolean The word ”class” appears in the
line.

F12 For Boolean The word ”for” appears in the
line.

F13 If Boolean The word ”if” appears in the
line.

F14 While Boolean The word ”while” appears in the
line.

F15 Case Boolean The word ”case” appears in the
line.

F16 Try Boolean The word ”try” appears in the
line.

F17 Catch Boolean The word ”catch” appears in the
line.

F18 Expect Boolean The word ”expect” appears in
the line.

F19 Member
access

Numeric Counts members accessors: . or
->

B. Classification algorithm

We consider a standard, binary classification problem
(decision classes are Count and Ignore) with numerical
and categorical variables. Therefore, it could be handled
by most of the available classification algorithms. However,
taking into account the practical application of the proposed
approach, we require that the model constructed by a clas-
sification algorithm has a form of a white-box, and allows
the user to analyze how a given decision was made.

Currently, we experiment with rules- and tree-based clas-
sifiers. In particular, we tested the approach using tree
algorithms available in the WEKA package [13]:

• J48 — an implementation of the C4.5 decision tree-
based classifier [21];



Figure 1. An example of a report generated by the CCFlex tool.

• PART — a rule-based classifier that derives rules from
C4.5 decision trees [10];

• JRip — a rule-based classifier, which is an implementa-
tion of Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) [7].

C. Flexible Lines of Code Counter (CCFlex)

To validate the proposed approach, we implemented a pro-
totype tool called Flexible Lines of Code Counter (CCFlex).
It is a Java-based console application that allows users to
mark the lines of code to count on training sample, train
a classifier, and perform LOC size estimation for the files
in the code base (LOC = number of lines classified as
Count). The tool supports all the predefined features F1–
F19 and the automatic acquisition of features based on the
frequency analysis. An exemplary report generated by the
tool is presented in Figure 1.

IV. PRELIMINARY VALIDATION

We decided to preliminary validate the proposed new
way of counting LOC by answering the following research
questions:

• RQ1: What level of prediction quality can be achieved
by the proposed approach?

• RQ2: How the automatic features acquisition affects the
classification quality?

• RQ3: How the choice of classification algorithm affects
the classification quality?

A. Datasets

We performed validation on a dataset containing samples
of code from three Open Source projects developed in
Java: Eclipse, Jasper Reports, and Spring MVC. The dataset
consisted of 9 files containing 2402 physical lines of code
in total (Eclipse: 475 LOC, Jasper Reports 757 LOC, and
Spring MVC: 1170 LOC).

The lines of code could be counted in different ways
depending on the purpose of the measurement. In this study,
we wanted to investigate how the proposed approach handles
two kinds of them. Therefore, we created two variants of the
dataset using different approaches to mark the lines to count:

• ELOC (Count: 1492 / Ignore: 910) — we asked a senior
software architect with over 15 years of experience
in the telecom domain to manually classify lines in
one of the files and use the same strategy to classify
the remaining files in the dataset. The rules used by
the architect seemed convergent with the definition of
Effective Lines of Code presented in Section II.

• Subjective (Count: 1237 / Ignore: 1165) — we decided
to investigate an extreme case by classifying lines
according to our subjective assessment of the value of
a given line of code. For instance, we ignored comment
lines containing only Javadoc formatting tags or some
sub-lines of multiline commands that seemed wrapped
without reason.

The ELOC variant of the dataset is an example of a
systematic approach to counting lines of code, strictly based
on the programming language syntax. The Subjective variant
corresponds to a more difficult situation when lines of
code are counted based on ”subjective” feelings of the
expert. According to our knowledge, none of the existing
measurement tools can handle such a case.

B. Validation procedure

We performed ten runs of 10-fold cross-validation proce-
dure on the following 18 validation schemes:

• two datasets (ELOC and Subjective);
• three feature sets (All: F01–F19 and acquired auto-

matically; Auto: F01–F04 and acquired automatically;
Predefined: F01–F19);

• three classification algorithms (PART, JRip, J48). We
used the default parameters for these algorithms pro-
vided by WEKA.

C. Prediction quality mesasures

We used a set of the state-of-the-art measures to evaluate
the prediction performance, such as Accuracy, Precision,
Recall, F-measure, and Matthews Correlation Coefficient
(MCC). The measures are calculated based on confusion
matrices (see Figure 2) and according to equations 1–5.

Accuracy =

∑n
i=1 I(ti = pi)

n
× 100% (1)



True 
Positive

(TP)

False
Negative

(FN)

True 
Negative

(TN)

False
Positive

(FP)

C not C

Actual class

Pr
ed

ic
te

d 
cl

as
s 

(C
C

Fl
ex

)

no
t C

C

C - a decision class (Count or Ignore)

Figure 2. Confusion matrix.

where
• n is the number of lines of code,
• t is a vector of the actual classes of lines,
• p is a vector of the predicted classes of lines,
• I is a function returning 1 if its argument is true and

0 otherwise.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F-score = 2× Precision× Recall
Precision + Recall

(4)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

D. Results

The results of the cross-validation are presented in Table
II. Depending on the dataset variant, features set, and clas-
sification algorithm, the average Accuracy ranged between
95.05% and 99.60%. We did not observe any visible differ-
ence between Precision and Recall, which ranged between
0.93 and 1.00. Also, the MCC coefficient, ranging between
0.90 and 1.00, indicated very high prediction quality.

We performed a series of t-tests (α = 0.05) to investigate
if any of the observed differences could be considered
statistically significant.

From the perspective of the choice of the classification
algorithm, we observed some statistically significant dif-
ferences when comparing PART vs. JRip (two significant
differences on Recall, F-measure, one on Accuracy and
MCC) and J48 vs. JRip (one significant difference on all
measures except Precision). None of the differences between
PART and J48 seemed significant.

Looking at the same problem from the perspective of the
considered features set, we observed difference depending
on the variant of the dataset. For ELOC, we observed that

using all or predefined features resulted in higher prediction
quality than when using automatically acquired features (one
statistically significant differences for all the quality criteria).
However, for the Subjective variant using all or automati-
cally acquired features provided more accurate results (three
statistically significant differences for all the criteria except
Precision).

E. Discussion

The observed accuracy of the proposed approach is promis-
ing (RQ1). The accuracy was similarly high for both variants
of the dataset. Such high accuracy is surprising especially
for the Subjective variant because the rules for counting or
ignoring the lines were not as strongly related to the Java
syntax as in the case of the ELOC variant of the database. It
seems that the formal and well-structured nature of source
code makes it easy to classify even if the rules are not
directly based on the language syntax.

The classifiers using the automatically acquired features
performed with nearly the same accuracy as those using the
predefined features for the ELOC variant of the dataset and
even better for the Subjective variant (RQ2). It is an inter-
esting result, taking into account that the automatic features
acquisition makes the approach flexible and programming-
language agnostic.

We have also used the learner-based feature selection
algorithm1 on the training data to determine which of the
features seemed the most relevant candidates for training
classifiers for each variant of the dataset and features set.
The selected features are presented in Table III. The first
observation was that for the ELOC variant of the dataset
only predefined features were selected when all the features
were considered. For the Subjective variant, an opposite
observation was made.

The choice of the classification algorithm did not visibly
affect the results (RQ3). The slight preference was observed
towards the PART and J48 classifiers. However, for all
considered algorithms the results seemed acceptable from
the practical point of view. However, it would also be
worth to investigate if the models created by the considered
classification algorithms are equally well understandable by
the potential users.

We also observed some limitations of the proposed ap-
proach. The first problem regards block comments. Cur-
rently, we analyze the code line by line. Therefore, only
the starting and ending lines of a block comment are easily
detectable. The second observed problem is when we have
more than one meaningful line of code within a single
physical line. To handle such case, we would either have
to extend the number of decision classes or develop an
additional layer of the algorithm that will estimate the
number of lines within a line to count.

1WEKA WrapperSubsetEval (classifier: J48) and the BestFirst method
(selection based on Accuracy and RMSE, five folds, threshold = 0.01).



Table II
THE RESULTS OF THE PREDICTION QUALITY EVALUATION (AVERAGES, AND STD. DEVIATIONS).

Dataset Features set Classifier Accuracy % Precision Recall F-Measure MCC

ELOC All PART 99.55±0.45 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All JRip 99.53±0.47 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined PART 99.53±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined JRip 99.56±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Auto PART 99.38±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.01
ELOC Auto JRip 99.28±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
ELOC Auto J48 99.18±0.54 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
Subjective All PART 97.34±1.14 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective All JRip 96.54±1.20 0.98±0.01 0.95±0.02 0.97±0.01 0.93±0.02
Subjective All J48 97.18±1.07 0.98±0.01 0.97±0.02 0.97±0.01 0.94±0.02
Subjective Predefined PART 95.05±1.45 0.97±0.02 0.93±0.02 0.95±0.01 0.90±0.03
Subjective Predefined JRip 95.32±1.44 0.97±0.02 0.93±0.02 0.95±0.02 0.91±0.03
Subjective Predefined J48 95.10±1.42 0.97±0.02 0.94±0.02 0.95±0.01 0.90±0.03
Subjective Auto PART 97.33±1.08 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective Auto JRip 96.38±1.14 0.98±0.01 0.95±0.02 0.96±0.01 0.93±0.02
Subjective Auto J48 97.08±1.09 0.98±0.01 0.96±0.02 0.97±0.01 0.94±0.02

Table III
THE MOST RELEVANT FEATURES SELECTED BY A LEARNER-BASED FEATURE SELECTION ALGORITHM ON THE TRAINING SETS.

ELOC, All ELOC, Predefined ELOC, Auto Subjective, All Subjective, Predefined Subjective, Auto

Brackets Brackets Freq. of ”*” Assignment Assignment Freq. of ”*”
Comments Comments Freq. of ”(” Freq. of ”*” Comments Freq. of ”available”
Semicolons Full length Freq. of ”;” Freq. of ”available” If Freq. of ”:”
Full length Semicolons Freq. of ”/” Freq. of ”:” While Freq. of ”=”

Full length Freq. of ”has” Full length Freq. of ”has”
Freq. of ”implied” Length Freq. of ”implied”
Freq. of ”license” Semicolons Freq. of ”license”
Freq. of ”none” Tokens Freq. of ”none”
Freq. of ”reserved” Freq. of ”reserved”
Freq. of ”return” Freq. of ”return”
Freq. of ”see” Freq. of ”see”
Freq. of ”software” Freq. of ”software”
Full length Full length
Length Length
Tokens Tokens

V. RELATED WORK

In the following section, we give a short introduction into
related work about measurement theory and lines of code
measures as well as related works on the use of machine
learning for prediction and measurement in the management
of software development.

Software size measures: To apply measurement theory
to software engineering Briand et al. [4] redefined basic con-
cepts, such as relational systems, mappings, and scales. As
a foundation for defining a general measurement instrument
model, properties can be defined for software measures,
similar to the definition of relational systems. Briand et al.

[5] define such properties, based on groundwork for more
general measure properties by Weyuker [27], Zuse [28] and
Tian and Zelkowitz [25]. The goal of the use of properties
is to ensure correctness of definitions of software metrics.
However, the approach cannot remove uncertainties from the
measurement process in practice (i.e. lacking a mechanism
to guarantee the correct instantiation of the mapping between
the empirical world and the relational systems).

With the appearance of new software development
paradigms over the years, also methods for size measurement
evolved. For example, the introduction of component-based
software development was accompanied by a new size



measure: the number of components [9], which was intended
as an addition to the measurement of the components’ sizes.
Similarly, object-oriented software development brought the
notion of measuring objects’ and methods’ size, e.g. [8],
[16] and [23]. Armour [1] recognized the problems of using
LOC measures when estimating the future size of software
and pointed out the future of Function Point Measurement.

However, ambiguity has a long history for many measures,
such as lines of code (e.g. as shown by Rosenberg [22]).
Park et al. [20] addressed this problem by providing one
of the first standardized instructions, focusing on distinct
guidelines to recognize physical LOC and logical LOC.
Our work is a complement and a different perspective on
this problem – trying to find which rules can be applied
to recognize the lines to be counted based on the human
classification.

This is mainly motivated by previous works. For example,
in our own previous work we have studied standard LOC
counters and the discrepancy between the results obtained
from them [24]. The study showed not just an inconsistency
between tools’ results, but also that the measurement error
can be recognized using statistics. Furthermore, it could be
seen that the source of the problem is the differences in the
internal rules applied in the LOC counters.

Also Lincke et al. [17] found significant deviations be-
tween tools when studying the measurement of size on
object-oriented designs. This way, they showed the impor-
tance of the notion of systematic and random measurement
errors.

Hebig et al. [14] studied the differences in results of
size measurement of multi-language programs when using
different measures. Having used different estimators of size
(e.g. Lines-of-Code, McCabe Complexity) they showed in-
consistent between measurement tools. Their results showed
discrepancies between tools for multiple estimators.

Machine learning: The main use of machine learning
techniques in the management of software development is
to predict aspects such as performance (e.g. for data base
queries as by Ganapathi, et al. [11]), error rates (e.g. Gondra
[12]), or effort.

Challagulla et al.[6] performed an experiment, where they
applied different prediction techniques on 4 data sets of
software defects. They could show that the combination
of machine learning techniques with statistical techniques
does not bring an advantage to the pure use of machine
learning. Furthermore, Wen et al. [26] performed a system-
atic review of 84 studies that investigate the precision of
effort estimation when using machine learning. The studies
include 8 different types of machine learning techniques,
of which Case-Base Reasoning, Artificial Neural Networks,
and Decision Trees occur most often. They found that in the
majority of studies (66%) non-machine learning approaches,
such as the Constructive Cost Model (COCOMO) [3], are
outperformed by machine learning approaches.

There are a few approaches to using machine learning
to retrieve metrics. These can be found in the area of
image and video processing. Narwari and Weisi [18] use
machine learning to pool features for quality assessment
of images. Köstinger, et al.[15] use the machine learning
to develop distance metrics for images. Their results show
that the learned metric can be orders of magnitudes better
than comparable methods. Machine learning was also used
to approximate functional size based on use-case names [19].

However, to the best of our knowledge, there is so far no
approach that explores the use of machine learning for the
creation of code metrics, such as LOC.

VI. CONCLUSIONS

In this paper, we explored the idea of using machine learning
(decision tree algorithms) as algorithms to classify lines of
code whether they should be counted or not. The goal was
to study whether we could exchange the static measuring
instruments with the more flexible ones, based on machine
learning. As shown in the paper the accuracy was very
promising between 95% and nearly 100%. This means that
the approach can be further developed and we need more
experiments with other entities to study the limitations of
this approach.

Our future work includes experimentation with more types
of programs (to study the impact of the training set on the
accuracy), defects and requirements (to study the impact of
different entities on the accuracy of the classification) and
different similarity algorithms (to study the impact of the
classifiers/features on the accuracy of the classification).

ACKNOWLEDGMENT

This research has been partially carried out in the Software
Centre, University of Gothenburg, and Ericsson AB.

REFERENCES

[1] Phillip G Armour. Beware of counting loc. Communications
of the ACM, 47(3):21–24, 2004.

[2] Barry Boehm. Managing software productivity and reuse.
Computer, 32(9):111–113, 1999.

[3] Barry Boehm, Bradford Clark, Ellis Horowitz, Chris West-
land, Ray Madachy, and Richard Selby. Cost models for
future software life cycle processes: Cocomo 2.0. Annals of
software engineering, 1(1):57–94, 1995.

[4] Lionel Briand, Khaled El Emam, and Sandro Morasca. On the
application of measurement theory in software engineering.
Empirical Software Engineering, 1(1):61–88, 1996.

[5] Lionel C Briand, Sandro Morasca, and Victor R Basili.
Property-based software engineering measurement. Software
Engineering, IEEE Transactions on, 22(1):68–86, 1996.



[6] Venkata Udaya B Challagulla, Farokh B Bastani, I-Ling Yen,
and Raymond A Paul. Empirical assessment of machine
learning based software defect prediction techniques. Inter-
national Journal on Artificial Intelligence Tools, 17(02):389–
400, 2008.

[7] William W. Cohen. Fast effective rule induction. In Twelfth
International Conference on Machine Learning, pages 115–
123. Morgan Kaufmann, 1995.

[8] Sergey Diev. Use cases modeling and software estimation:
applying use case points. ACM SIGSOFT Software Engineer-
ing Notes, 31(6):1–4, 2006.

[9] Jose Javier Dolado. A validation of the component-based
method for software size estimation. IEEE Transactions on
Software Engineering, 26(10):1006–1021, 2000.

[10] Eibe Frank and Ian H. Witten. Generating accurate rule sets
without global optimization. In J. Shavlik, editor, Fifteenth
International Conference on Machine Learning, pages 144–
151. Morgan Kaufmann, 1998.

[11] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L
Wiener, Armando Fox, Michael Jordan, and David Patterson.
Predicting multiple metrics for queries: Better decisions en-
abled by machine learning. In 2009 IEEE 25th International
Conference on Data Engineering, pages 592–603. IEEE,
2009.

[12] Iker Gondra. Applying machine learning to software fault-
proneness prediction. Journal of Systems and Software,
81(2):186–195, 2008.

[13] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten. The WEKA
data mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18, 2009.

[14] Regina Hebig, Jesper Derehag, and Michel RV Chaudron.
Identifying metrics’ biases when measuring or approximating
size in heterogeneous languages. In 2015 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 1–4. IEEE, 2015.

[15] Martin Köstinger, Martin Hirzer, Paul Wohlhart, Peter M
Roth, and Horst Bischof. Large scale metric learning from
equivalence constraints. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pages 2288–
2295. IEEE, 2012.

[16] Luiz A. Laranjeira. Software size estimation of object-
oriented systems. IEEE Transactions on software engineering,
16(5):510–522, 1990.

[17] Rüdiger Lincke, Jonas Lundberg, and Welf Löwe. Comparing
software metrics tools. In Proceedings of the 2008 inter-
national symposium on Software testing and analysis, pages
131–142. ACM, 2008.

[18] Manish Narwaria and Weisi Lin. Svd-based quality metric for
image and video using machine learning. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics),
42(2):347–364, 2012.

[19] Mirosław Ochodek. Functional size approximation based
on use-case names. Information and Software Technology,
80:73–88, 2016.

[20] Robert E Park. Software size measurement: A framework
for counting source statements. Technical report, DTIC
Document, 1992.

[21] J Ross Quinlan. C4. 5: programs for machine learning.
Elsevier, 2014.

[22] Jarrett Rosenberg. Some misconceptions about lines of code.
In Software Metrics Symposium, 1997. Proceedings., Fourth
International, pages 137–142. IEEE, 1997.

[23] Miroslaw Staron. Measuring the size of stereotypes, profiles,
and stereotyped designs in uml. In Model Size Workshop,
2006.

[24] Miroslaw Staron, Darko Durisic, and Rakesh Rana. Improv-
ing measurement certainty by using calibration to find sys-
tematic measurement error–a case of lines-of-code measure.
In 18th KKIO Software Engineering Conference, 2016.

[25] Jianhui Tian and Marvin V Zelkowitz. A formal program
complexity model and its application. Journal of Systems
and Software, 17(3):253–266, 1992.

[26] Jianfeng Wen, Shixian Li, Zhiyong Lin, Yong Hu, and
Changqin Huang. Systematic literature review of machine
learning based software development effort estimation mod-
els. Information and Software Technology, 54(1):41–59, 2012.

[27] Elaine J. Weyuker. Evaluating software complexity measures.
Software Engineering, IEEE Transactions on, 14(9):1357–
1365, 1988.

[28] Horst Zuse. A framework of software measurement. Walter
de Gruyter, 1998.


