
Online Robustness Testing of Distributed Embedded
Systems: an Industrial Approach

Khaled Alnawasreh∗†, Patrizio Pelliccione∗, Zhenxiao Hao∗, Mårten Rånge†, and Antonia Bertolino‡
∗Chalmers University of Technology | University of Gothenburg

Department of Computer Science and Engineering, Gothenburg, Sweden
†Ericsson AB, Gothenburg, Sweden

‡ISTI - CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
khaled.nawasreh@gmail.com, patrizio.pelliccione@gu.se, haozhenxiao2010@gmail.com,

marten.range@ericsson.com, antonia.bertolino@isti.cnr.it

Abstract—Having robust systems that behave properly even
in presence of faults is becoming increasingly important. This
is the case of the system we investigate in this paper, which is
an embedded distributed system consisting of components that
communicate with each other via messages exchange in the RBS
(Radio Based Station) at Ericsson AB in Gothenburg, Sweden.
Specifically, this paper describes a novel fault injection approach
for testing the robustness of distributed embedded systems with
very limited computation power. The new approach is inspired by
Netflix’s ChaosMonkey, a fault injection approach that has been
developed for testing distributed systems hosted in the cloud.
However, ChaosMonkey cannot be used in the context of RBS
since the latter consists of small-embedded components with
specific requirements of performance, programming language,
and communication paradigm. This paper reports about the
approach called Postmonkey we developed, illustrates the results
of applying it to RBS, and discusses the potential of utilizing fault
injection to test complex, embedded, and distributed systems. The
approach and tool are now adopted by Ericsson.

Keywords-online testing; fault injection; distributed embedded
systems;

I. INTRODUCTION

As software for distributed systems becomes more complex,
ensuring that a system meets its prescribed specification is
a growing challenge for software developers [1]. Testing of
large scale distributed systems may be very hard due to the
fact that many different types of faults can occur at any time
and it is very hard to imagine all possible scenarios that
could occur due to interactions and collaborations among the
distributed and potentially independent systems. Traditional
testing techniques are not sufficient to predict the effects of
faults on real-world applications running on large distributed
systems [2]. In general, manual tests tend to test the existence
of specified (known) failure modes. However, unknown failure
modes should be also taken into account.

This is true in particular in testing system robustness,
i.e. the degree to which a system can continue to function
correctly even in the presence of invalid inputs or stressful
environmental conditions [3]. As a matter of fact, verifying
the robustness of distributed system is not trivial. Moreover,
when faults occur in running services, faults can exponentially
propagate [4]. For this reason, testing should become also a
run-time activity [5]. Online testing aims at evaluating systems

in their real execution environment [6] and at validating that
the system meets its requirements continuously.

In this paper, we present an approach, called Postmonkey1,
that has been conceived for online robustness testing of dis-
tributed embedded systems. Postmonkey has been developed
in collaboration with a team at Ericsson AB in Gothenburg,
Sweden. As said, when dealing with large scale distributed
systems it is very hard to anticipate the possible scenarios
that can occur as caused by interactions and collaborations
among the distributed and potentially independent systems.
This motivates the interest for non-deterministic approaches
that permit to go beyond specified and, consequently, known
failure modes.

The Postmonkey approach provides a non-deterministic
testing method for checking the robustness of distributed
embedded systems with very limited computation power.
Postmonkey injects two different fault types, namely sending
invalid messages and delaying the messages. We believe that
randomized testing is a cost-effective way to complement
traditional testing, remove potential developer bias and identify
unknown failure modes.

To develop the approach, we followed an agile development
process, and consequently Postmonkey was evaluated contin-
uously also through log files storing wanted and unwanted
system behaviors, like system interrupts, message delaying,
timeouts and so on. Continuous evaluation of the approach
helped us in developing the work as needed, decreasing the
uncertainty level, and increasing the work quality. The source
code of each iteration was pushed to a remote repository which
practitioners had access to. During regular weekly meetings
with practitioners, we got feedback on the fault injection
approach and tool. Furthermore, during the last iteration,
we presented the fault injection approach and tool to the
development team for a final validation.

As a conclusion of this study, we show that fault injection
techniques can be used for improving the robustness of em-
bedded distributed systems. Furthermore, using our approach
we detected unexpected faults within distributed embedded

1Postmonkey is a portmanteau fusing the word Postman and Monkey. The
rational is that the approach is inspired by ChaosMonkey and applies it at the
level of message exchange (content and delay) - this is why Postman.

systems of Ericsson. Although the quality of the tested system
has been proven to be quite high, there have been some
surprises, which were not caught by traditional testing: (i)
fuzzing of signals has detected a weakness in the system
handling dynamically sized objects that might cause a crash
and that could be then rectified, and (ii) randomized delays
detected misconfigured timeout handling. It is important to
highlight that the manual test cases were defined based on the
same wrong assumptions made for the production of the code,
thus the error was missed.

Postmonkey also provided a clear indication of dependency
bottlenecks, i.e. where faults might most probably occur.
Consequently, we could suggest improvements of the software
architecture and some of these improvements were actually
implemented, based on the observed results. The approach is
now adopted by the division of Ericsson with which we collab-
orated for realizing this work. At present stage, Postmonkey
has not yet been deployed in customer production networks,
as further validation is ongoing. However, it is now used in
networks that are run internally at Ericsson to capture faults
at last stage before deployment to production.

Summarizing, the main contribution of the paper is Post-
monkey, a non-deterministic testing approach for checking the
robustness of distributed embedded systems with very limited
computation power. The approach and lessons learned are
general and can be adopted and replicated in other companies.
The successful collaboration model between academia and in-
dustry is based on iterative development/validation cycles and
close collaboration with practitioners thus enabling continuous
feedback and integration with real environments.

This paper is structured as follows: Section II identifies the
context of the paper and presents the industrial environment
in which we performed the research. Section III compares
the approach to related works. Section IV presents the re-
search methodology. Section V introduces Postmonkey and
Section VI describes the implementation of the approach. Sec-
tion VII reports the validation and results obtained by applying
the approach to a real industrial environment. Section VIII
discusses lessons learned. Finally, Section IX concludes the
paper with final remarks and future research directions.

II. CONTEXT

The usage of the Internet is continuously growing in the
industry due to the fact that more and more devices are
connected, as shown in Figure 1. Specifically, Machine-to-
Machine (M2M) connection is expected to grow strongly,
driven by new use cases, e.g., in cars, machines and utility
metering. Distributed systems need to be increasingly resilient
to different types of faults and combinations of them as part
of the system’s normal operating procedure. Combination of
faults may have a major impact on the performance of the
system, sometimes even leading to systems being temporarily
out of service, which has dramatic effects on embedded
distributed systems, because such systems are increasingly
fragile and safety critical [7]. Indeed, distributed systems tend

to have more unexpected faults than other types of systems
when used in reality [2].

Fig. 1. Ericsson Mobility Report June 2015 [8]

RBS (Radio Base Station) is an integral part of the mobile
data solutions delivered by Ericsson. RBS consists of embed-
ded components that are connected in order to support high
network availability to a wide area network. A mobile network
is a distributed system that consists of many RBSs. Along with
the increase of network signaling volumes and the operators
demand of more complex configurations for supporting more
usage scenarios, the need for improving resilience is also
increasing. The network should be flexible to respond to the
challenge of the dramatic increase of the network traffic and
signaling created by the operators and subscribers [9].

The Performance Management (PM) framework is one key
component of RBS used to count phone calls and network
usages of subscribers. The RBS components, including the
PM framework, are tested using traditional approaches like
unit testing and functional testing. Unit testing provides the
instruments for testing the functionality of the units taken
individually, however, it will not catch integration or system-
level errors. Functional testing combines different test cases
and can test the code at system level, however, such a
combination is usually limited. Functional and unit testing
approaches are mostly used to address failure modes that are
expected. Potential unknown failure modes are very hard to
be detected by traditional testing.

In order to catch also unknown failure modes, testing should
be randomized and fault injection [10] can be a valuable
technique to be exploited for this purpose. While several ap-
proaches exist for fault injection, such as Chaos Monkey [11],
they are not adequate for testing distributed embedded systems
with very limited computational power such as the PM frame-
work. In fact, the use of Chaos Monkey is costly and consumes
extra resources such as network bandwidth, storage space,
and processing power [21]. This motivated the design and
implementation of Postmonkey, which is specifically tailored
for systems with limited computational power.

III. RELATED WORK

A. Fault injection

There are two types of fault injection: hardware and soft-
ware fault injection [12]. In hardware fault injection faults are
injected at the physical level by controlling the parameters of
the environment variables. In this case, fault types can be like

disturbing the power supply, voltage sags, heavy ion radiation
and electromagnetic interference etc. [12]. In software fault
injection a possible strategy to inject faults is to consider
different fault types such as register and memory faults, system
overload, and missing, delayed and faulty messages. Faults
can be injected within the application, between the target
and operating system or between the critical components
in the system. Software fault injection techniques can be
classified into two groups based on when and where the
faults are injected: compile-time and run-time faults. Faults
can be triggered by different mechanisms, for instance, time-
out, exception, code modification, and sending of different
random messages [12].

The work in [2] presents a new model called Failure
Scenario as a Service (FSaaS). The main purpose of this
model is to test the resilience of cloud applications. This
can be done by monitoring the result of generating different
failure scenarios on the cloud. This work investigates the
impact of the failure on the jobs running in Hadoop for
analyzing the MapReduce jobs. Hadoop is an open source
software framework to process large distributed data set on
huge computer clusters [13]. MapReduce is an efficient model
for processing and generating large data set that is running
on the distributed system on computer clusters [14]. A fault
injection tool called AnarchyApe [15] was used to inject
faults into Hadoop clusters. In order to evaluate the effects of
individual faults and combinations of faults, some sample fault
scenarios and different types of workloads were performed on
different types of Hadoop jobs. The authors discovered that
the resulting behavior of the distributed system depends much
on the fault types, combination of faults, job types, and the
time when the faults are injected. The study presents a new
model that can deal with large cloud applications to be tested
efficiently. The model helped them to identify the weak spots
of the system and trying to fix them as well as monitor the
resources for efficient utilization. The limitation of the model
is that it can be only used by cloud service providers and
clients who rely on Hadoop. However, their goal is to develop
a system that can be applicable to general cloud scenarios [2].
In this paper, we aim at developing a fault injection approach
and a tool that can be applied to small embedded distributed
systems.

B. Online Testing

Because of the inherent complexity of modern systems,
testing cannot be confined during development and offline
phases but needs to be extended also to online phases. Several
online testing approaches have been proposed in many areas,
like service choreographies [16], [6] [17], [18], [19], [20].

1) Chaos Monkey Testing: Chaos Monkey Testing
(CMT) [11] has been developed when Netflix moved their
data center to Amazon Web Services (AWS). The main reason
for developing CMT was to assess how potential failures
in AWS would affect their ability to produce continuous
services. CMT works by sending fault commands to the
components that are hosted in the cloud. On receiving the

commands, the instance of the cloud itself will fail. By
introducing faults CMT enables Netflix to discover the
bottlenecks and weaknesses in their systems. Moreover, this
helps them to strengthen the weak areas that are critical in
their system. CMT helps to detect different failure scenarios
and to find unexpected failures that cannot be detected using
traditional methods.

CMT software design is flexible and can be used for other
cloud service providers. However, it is just applicable for
testing the availability and robustness of the services running
in the cloud. Chaos Monkey Testing is applicable in systems
that have the ability to perform even in the presence of faults.
Otherwise, the risk is that the overall system will crash within
a short time. Additionally, CMT suffers from the limitation in
terms of computational power. In the case of a large number
of test cases to be executed, it might even dominate the power
consumption. Using CMT in large-scale systems will be costly
and will consume extra resources such as network bandwidth,
storage space, and processing power [21]. When using this
approach, an engineer should consider hardware reliability,
memory managements, and the runtime environment.

2) Let-it-Crash Philosophy: The work in [22] investigates
the use of the Let-it-Crash (LiC) paradigm to assess the
applicability of safety-related software, check how error han-
dling performs, as well as identify potential improvements for
future work. The main challenge of the LiC paradigm is to
identify different software fault types in order to improve error
handling in safety critical systems.

LiC only triggers the monitoring process, then fast re-
placement of the terminated software part can be performed.
LiC can be efficiently utilized in safety-related software de-
velopment that has a low number of complex tasks. The
programming language should be Erlang and it does not
cover large-scale embedded distributed system. Furthermore,
this approach has a problem when it comes to safety-critical
systems with hard time constraints, since Erlang does not
support them [22].

IV. RESEARCH METHODOLOGY

Our collaboration model between academia and industry is
based on the design and creation methodology, which was
developed to address theoretical questions about the character-
istics of learning in context. It is mainly used for creating new
knowledge and artifacts that are required to solve a particular
phenomenon or problem [23].

The Postmonkey approach and tool have been conceived
and implemented following an agile development process
and in strong synergy with practitioners within Ericsson. As
anticipated in the introduction, the approach and tool have
been developed in iterations (precisely four) and each iteration
was composed of four phases, namely:

• Awareness of problem: we had weekly meetings with
practitioners at Ericsson and analyzed available docu-
mentation about the PM framework for identifying the
bottleneck of the system and determining the injections.
Additionally, Ericsson’s internal fault reports and other

available documents helped in gathering more informa-
tion about the weakness of the system and identifying
where problems can occur.

• Suggestion and solution: based on the Ericsson fault
report and on existing fault tolerance solutions of the
PM framework, potential fault types were discussed with
practitioners. We decided to address two fault types: the
first one was sending random messages and the second
one was delaying messages. The rationale of sending
random messages is to test the filterability of the PM
framework against random invalid messages. Message
delays were introduced between the critical components
of the PM framework where faults can occur.

• Implementation: the implementation phase contains two
steps: tool development and tool integration. It is detailed
in Section VI.

• Evaluation: since we followed an agile development
process we had a continuous evaluation of the approach
and tool through the following means: (i) weekly meeting
with practitioners for getting feedback; (ii) continuous
validation of defined requirements for the expected con-
formance level on how the approach should work; (iii)
observation of the results of the execution of the fault
injection tool stored in log files; (iv) comparison of the
observed results with the expected ones (how the system
should perform in its normal state); (v) if faults were
detected, evaluation of the faults by tracing backward to
their causes.

V. THE POSTMONKEY APPROACH

Figure 2 presents the basic components of Postmonkey. It
consists of the target system (PM fwk - which stands for PM
framework), fault injector, monitor (log files), Inter Process
Communication (IPC) library as well as the controller that in-
cludes the automatic testing environment and the configuration
files. As better explained in Section VI configuration files are
exploited to make the fault injector customizable, extensible,
and reusable in different contexts.

Inter	Process	Communica0on	(IPC)	library	

Fault	Injector	 Target	System		
(PM_fwk)	

Monitor	
(log	files)	

Controller

Auto_tes0ng	Environment	

Configura0on	
files	

Fig. 2. The Postmonkey approach

After running the Postmonkey tool, all data are monitored
from the log files using stack trace. These data are collected
and analyzed for the evaluation of the approach and of the
tool. The user can run and control the tool through the
controller, where the automatic testing environments and the
configuration files are located. Through the automatic testing
environment, different testing techniques are listed. The Post-
monkey tool supports random mechanisms where the number
of faulty messages, message delay, and the time interval
between sending the messages are randomized. The user can
manually adjust the test cases through the configuration files.

The Postmonkey approach provides different fault types at
different locations and times. As said, we have developed two
fault types: (i) sending random messages and (ii) delaying the
messages. Fault types such as sending invalid messages and
delaying the messages were done by linking some dynamic
libraries of IPC during run time. IPC library is a separate com-
ponent, which consists of several system functionalities such
as sending messages between different system component.

In order to perform interesting and valuable experiments, to-
gether with practitioners, we identified suitable system targets,
i.e. some critical components of the PM framework that have
strong dependencies. Faults were injected on system targets
that have strong coupling. Due to the fact that the time factor
can have an effect on running the experiments and to make
sure that the results we got are reliable, we have repeated the
experiments an additional two times.

1) Sending random messages: The communication within
the system follows some specific protocols. Sending random
messages is mainly developed to test the fault tolerance ability
of the protocols. The messages are categorized into three types:
request, confirmation, and rejection. Based on the designed
fault tolerance feature and the possible message types in
reality, we only perform sending of random request messages.
We focus on three aspects of the invalid messages, namely the
origination, the contents and the amount of sending.

The system is designed to tolerate invalid request mes-
sages, one main filtering standard of invalid messages is the
origination of the messages. We focused on three aspects of
the message origination: the namespace name, the mailbox
name, and combination of namespace and mailbox names. We
first created multiple mailboxes that have the same namespace
name, i.e., the random messages are generated from different
threads but from the same process. Then we created mailboxes
with same mailbox names but different namespace names;
this means that the random messages are generated from both
different threads and different processes. Lastly, we created
mailboxes with both different mailbox names and namespace
names. The three cases of mailbox and namespace names are
shown in Table I.

mailbox namespace
case 1 S D S stands for same
case 2 D S D stands for different
case 3 D D

TABLE I
COMBINATIONS OF MAILBOX AND NAMESPACE NAMES

The message contents inside the system varied dramatically:
some contents describe the actual payload, some describe
the protocol version, some specify the size of the messages.
The fields of the messages were also different from each
other. Based on the above characteristics, we constructed the
random messages from two different aspects: random fields,
and random contents.

The number of random messages would affect the filtering
ability of the protocols. For instance, by sending one random
message, the system is able to filter it, but by sending 1000
random messages, the system might only be able to filter 500
of them. With a huge amount of random messages, the CPU
load of the systems would be high. Please refer to Section VII
for details about the performed experiments.

2) Delaying messages: The second fault injection scenario
was delaying the messages between the system components.
The delay mechanism used a fixed time interval, which we
identified as default value. Moreover, it used a randomized-
time interval between different components of the system in
order to check if the system can handle different timeout
intervals. Multiple types of messages are exchanged within
the PM framework, e.g., request message, response message,
rejection, confirmation message and messages describing the
data. Some types of messages followed some timeout mech-
anism strictly. For instance, when the connection request is
sent, the node waits for confirmation or rejection messages
for a period of time; if neither a confirmation nor a rejection
message is received, the current request of the node just goes
in timeout.

Fig. 3. Message delaying chain

Some messages sent within the PM framework have rela-
tionships with each other. Those messages usually work as a
chain, as shown in Figure 3. In this case, node1 wants to
send a request to node4 for some data, however, node4 is
reached by sending a message to node2 that in turns will send
a message to node3, which finally will deliver the request to
node4. Once node1 sends a message to node2 it starts also
a clock for the time-out mechanism, while node1 only waits
for a response from node4. Delays can happen on any of the
messages sent between node1 and node4. In reality, such a
chain can be really long and the delay of the messages sent
between each node can also be very unpredictable.

Delaying messages in the PM framework also tests the
network performance. Currently, the network performance test
of the PM framework is conducted by adjusting the network
bandwidth. This approach has two main drawbacks. First, the
test has some hardware requirements, which makes the test
more complicated. Second, adjusting the network bandwidth

makes the test uncontrolled, because the delaying of the
message caused by a low network bandwidth is very hard to
track. The current network performance test is like a black-
box testing since what is really going on in the system during
the test is not completely clear. Our test provides a white box
testing for the PM framework network performance. During
the message delaying, each message delay is recorded in the
log file, and thus the PM framework developers at Ericsson can
easily track the message delaying. A novel network bandwidth
benchmark has been created based on the experiences of the
message delaying.

VI. IMPLEMENTATION

The implementation of Postmonkey consists of two steps:
tool development and tool integration. The first step mainly
concerns the development of the fault injection tool using an
Ericsson internal shared library called Inter Process Commu-
nication (see Section VI-A); the results of this step are some
compiled C++ object files. The second step mainly concerns
the work of integrating the developed tool into the automatic
testing environment of the PM framework, where Shell Scripts
and Ruby were used (see Section VI-B). Then, this section will
describe the implementation of the procedure for the two fault
types we considered in the study: sending random messages
(see Section VI-C) and delaying messages (see Section VI-D).

A. Inter Process Communication

Inter-Process Communication (IPC) is used as a communi-
cation paradigm in some components of the PM framework.
The collection of information from the system is done through
the collection of the counters and events between its com-
ponents. IPC is used to send messages between mailboxes,
processes, and processors. A processor is an execution unit that
is handled by one instance of an operating system, it can have
multiple cores and several simultaneously executing contexts.
A process has its own memory map and can have several
running threads. A thread is a single execution context that
can coexist with other threads within a process. We worked on
a simulated environment, where the processor was the CPU
of the computer, a process was a simulation of a processor
on the embedded components, and a thread was a simulation
of a process in the real operating system. Figure 4 shows
the relationship between the real operating system and the
simulated environment. In our implementation, only processes
and threads were involved; they were identified by the process
namespace and the thread name.

IPC is a widely used library of RBS. The PM framework
is built on top of IPC and uses the APIs of IPC for the
communication within the system. By exploiting the IPC APIs
we performed our implementation without touching the code
of the PM framework and were able to inject random faults
into the PM framework from outside the framework. In this
way, the fault injection is not requiring any extra computation
to the framework.

Fig. 4. Relationship between real system and simulated environment

B. Automatic testing environment

We developed a set of automated scenarios to test the func-
tions of the PM framework. The automatic testing environment
is used to test the PM framework with such scenarios. The
automated test scenarios will be used by the fault injection
tool to verify that the PM works even in the presence of faults.

The Postmonkey tool was integrated into the automatic
testing environment using Shell Scripts, which inject random
faults into the PM framework while executing the scenarios.
The automatic testing environment also controls the operations
of the fault injection tool like code generation, compiling and
linking. The integration of Postmonkey with the automatic
testing environment facilitates the adoption in industry and
enhances the usability of the tool.

The results of the execution of the fault injection are
presented at the end of the testing execution and details are
stored in log files. Figure 5 shows an example of testing
execution: it shows that some errors have been found and,
consequently, some log files have been created.

Fig. 5. Running results of automatic testing environment

C. Sending random messages

In IPC, different messages were constructed with C++
structs; after initialization, the message objects were encap-
sulated in a message union and sent together. The fields of
the messages are specified in some XML files; an excerpt is
shown in Listing 1. We first ignored those files and constructed
the messages with random fields, this means that the messages
might miss some necessary fields and might contain some ex-
tra unnecessary fields. After that, we constructed the messages
following the XML files but with randomly filled contents, for
instance, making the field called messages size to be a random
number instead of the real message struct.
1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 <s i g n a l name=” CountersRcfm ” osename=”COUNTERS RCFM

” s i z e =” 12 ”>
3 <e l e m e n t name=” sigNo ” s i z e =” 4 ” s t e r e o t y p e =

” s i g n a l n u m b e r ” />
4 < / s i g n a l>

Listing 1. XML that specifies message fields

Constructing the message structs was based on the skeleton
of the XML files, different categories of messages had different
message fields and required different C++ header files. In order
to implement the randomization mechanism, all the request
message structs and their corresponding required header files
need to be considered. To make the functionality of sending
random messages customizable, the messages are specified in
a configuration file. A code generator written in Ruby is used
to create the message structs. By reading the configuration file
and the XML file that specifies the message fields, different
message structs code are generated and compiled to different
binaries.

The next step after the construction of random messages
is to create the senders. The senders are actually some mail-
boxes located in the same namespace, which means that each
mailbox has a separate thread and they are all located in
the same process. In order to send the messages to some
targets, the mailbox address of the targets should be known. In
the PM framework, the mailbox addresses can be located by
using combinations of the namespace names and the mailbox
names. In our implementation, we put all the namespace names
and mailbox names into vectors, we calculate all possible
combinations and we put them into a map. So if there are
n namespace names and m mailbox names, then we have
m ∗ n combinations in total. Once a TID2 is successfully
located, it is saved in another vector that will be used as
the target of the sending. The messages are sent in two
different ways, synchronously and asynchronously. Sending
the messages synchronously is implemented by joining the
mailbox to the main thread.

Sending random messages is integrated into the automatic
testing environment, which is written in Shell script. Every
error triggered by the random messages is logged and the
logging is implemented with a watch dog. The watch dog
keeps track of which message are sent and how many of them

2TID stands for Thread ID, i.e. an identifier used to identify a thread. It is
also used to identify the mailbox associated with that thread.

were sent. The watch dog also keeps pinging all the previously
located TIDs and if any of them crashes at the time when
the messages are sent, the watch dog would also log such
a TID. The log file provides a summary of all the relevant
events happened while injecting random messages to the PM
framework; this facilitates the detection of errors that are not
found with unit testing.

D. Delaying messages

In the PM framework, messages are sent using IPC by
linking some dynamic libraries during runtime. In C and C++,
it is possible to wrap the dynamic library functions. Such
a wrapping is implemented by creating shared libraries that
override the functions of the original dynamic libraries. Such
a dynamic library file can be linked by setting an environment
variable called LD_PRELOAD. We implemented the delaying
messages by wrapping the IPC dynamic libraries that are
responsible for sending messages. As shown in Listing 2,
the name of original message sending function was called
__itc_send, the main parameters of this function were the
message contents named “msg”, the receiver named “to” and
the sender named “from”. The wrap function had exactly the
same function name and parameters with the original function.

1 i n t i t c s e n d (
2 un ion i t c m s g ∗∗msg ,
3 i t c m b o x i d t to ,
4 i t c m b o x i d t from ,
5 c o n s t c h a r ∗ f i l e ,
6 i n t l i n e)
7 {
8 i n t (∗ r e a l i t c s e n d) (
9 un ion i t c m s g ∗∗ ,

10 i t c m b o x i d t ,
11 i t c m b o x i d t ,
12 c o n s t c h a r ∗ ,
13 i n t) = dlsym (RTLD NEXT, ” i t c s e n d ”) ;
14 s l e e p (1) ;
15 r e a l i t c s e n d (msg , to , from , f i l e , l i n e) ;
16 }

Listing 2. Code that wraps the sending function of IPC

As it can be seen in Line 14, before calling
__real_itc_send, we let the current thread sleep
for 1 second; this means that the __itc_send function
was always executed 1 second after being called, which
implemented the delaying of message sending.

1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”ISO−8859−1” ?>
2 <c o n f i g >
3 <env v a r =”DEBUG” v a l u e =” t r u e ” />
4 <env v a r =”LD PRELOAD” v a l u e =” /PATH/TO/ wrap . so ” />
5 < / c o n f i g>

Listing 3. XML for setting the environment variable

After being compiled, the shared library can be loaded by
setting the environment variable LD_PRELOAD to the path of
this shared library. The environment variables are set in an
XML file as shown in Listings 3 and 4. At Line 4 of Listing 3
the environment variable called LD_PRELOAD is set to the
path of a shared library file called “wrap.so”. Listing 4 is an
XML configuration file of a node in the PM framework, Line 5
contains the path to the environment variable configuration

file, the environment variable is set by adding this line into
the node configuration file and restarting the node.
1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”ISO−8859−1” ?>
2 <a p p d a t a t a r g e t =”appm”>
3 <loadmodule t a g =” dynamic ” name=”

PMTESTAGGREGATOR” i d =”CXC1737528”>
4 < f i l e t y p e =” i686 ” r e l p a t h =”SOME PATH” />
5 < f i l e t y p e =” c o n f i g ” r e l p a t h =”PATH TO /

e n v c o n f i g . xml ” />
6 < / loadmodule>
7 < / a p p d a t a>

Listing 4. XML configuration file of a node in the PM framework

VII. VALIDATION AND RESULTS

This section introduces the results of performing fault
injection with the Postmonkey tool. First, we show the steps
of performing the fault injection, the variable parts, and the
expected outcomes. Then, we show the real outcome, the
performance of the PM framework and the detected bugs.

As explained in the introduction, we developed the approach
through an iterative approach. In order to evaluate if the
fault injection approach reached the conformance level against
its requirements, the approach was evaluated at the end of
each iteration. At the end of the final iteration, we made
a final validation. The fault injection approach has detected
unexpected faults that were not found by previously used
testing techniques. As matter of fact, we could also see that
this approach is able to identify the bottleneck of existing
embedded distributed systems. In the following, we report
the detailed results of the validation. Specific information is
however omitted according to a non-disclosure agreement with
the company.

A. Sending random messages

The validation related to injecting random messages aims
to give an answer to this question:

• To what extent is the system able to filter invalid mes-
sages?

To answer the above question, we sent random messages
in two ways, synchronously and asynchronously. Filtering of
invalid messages is conducted by checking the properties of
the messages. Such checking consumes time and processing
power. So the filtering ability can also be affected by the
frequency of the random messages. To test the filtering ability
of the PM framework in terms of random message frequencies,
the random messages are sent to the PM framework with dif-
ferent frequencies. This was implemented by giving different
time intervals between each message sending.

The number of invalid messages that need to be generated in
order to let the system behave differently from what expected
varies depending on the time interval between the messages as
well as the time when the messages are triggered. Sending a lot
of invalid messages without having any time interval between
messages leads the system to behave differently than expected.
This happens due to the fact that the computation power of the
embedded components is limited, the number of the messages
are large and there is not enough time between message

sending. Thus, the system will not be able to recognize if
a message is valid or not.

Fig. 6. Testing chains

Figure 6 shows the test chains of the PM framework. In
order to perform the test randomly, we created different C++
classes to represent different variables in the chain. There
are four variable classes, which are Cases, DataType (fields
or contents), Concurrency (synchronously or asynchronously),
and Intervals. When the test starts, variable objects of the test
chains are initialized and connected randomly. One sample test
chain from the left to right can be read like this: test case1,
with same fields but different contents, send the random mes-
sages synchronously, the time interval between each random
message is 100ms.

By performing the random message sending to the PM
framework, we are able to test the PM framework according
to two different aspects. The first aspect is the message type,
which tests the PM framework at the functional level. The
second aspect is the message amount, which tests the PM
framework at the performance level. The module test of the
PM framework has covered almost all the invalid message
sending, but the test is not random and the messages are sent
one at a time. Our test sends random messages randomly and
messages are also combined randomly. This helps the PM
framework developers at Ericsson to find corner cases that
were not covered before.

Sending random messages also plays a performance test
role. By adjusting the number of random messages and the
time interval between the random messages sent, a perfor-
mance threshold of the PM framework was found. Based on
the demand in reality, this test helped the PM framework de-
velopers to find secure hardware requirements, which provide
optimal and economic solutions for Ericsson.

Figure 7 shows a curve of sending random messages to one
node in the PM framework. The response time of messages
sent to this node should be less than 200 milliseconds. If
no response is received after 200 milliseconds, the sender
will time out. Figure 8 shows a snapshot of sending random
messages synchronously with different time intervals between
each sending, which will not trigger timeout. Figure 7 shows
that the node can maximally receive 1200 random messages

Fig. 7. Sending invalid messages asynchronously

at the same time. Figure 8 shows that in order to send
6000 messages, each message sending should have at least an
interval of 80 milliseconds. These snapshots have been saved
as benchmarks for improving the performance of the nodes.

Fig. 8. Sending invalid messages synchronously

Thanks to these tests, we identified some errors that were
not identified by traditional testing. For instance, fuzzing
of signals, i.e. perturbing the messages/inputs randomly, has
detected a weakness in handling dynamically sized objects,
which was causing a crash.

B. Delaying messages

In this case, the validation aims to give an answer to the
following question:

• Is delaying messages an effective strategy to discover
faults?

In order to provide an answer to this question, we operated
as follows. Figure 9 shows the time of delaying in millisec-
onds and the corresponding network bandwidth in Mbit/s.
The nodes use wireless communication and Ericsson uses
the international standard of Wireless 802.11n [24], whose
normal bandwidth is 600 Mbit/s. This benchmark is used to
adjust the network bandwidth when the system is performing

Fig. 9. Message delaying and corresponding network bandwidth

abnormally; the delaying mechanism is exploited to identify
which process is responding slowly.

Randomized delays detect misconfigured timeout handling.
This was not identified by manual testing since the testers
made the same wrong assumptions of the developers, and
consequently, the defect was missed. This testifies the potential
existence of human bias in manual testing.

VIII. DISCUSSION

In this section, we discuss the lessons learned (Sec-
tion VIII-A), the quality of findings and what benefits could
be gained from the study (Section VIII-B), and the challenges
of adopting the fault injection approach (Section VIII-C).

A. Lessons learned

Randomized testing: Randomized testing can be successfully
used to complement traditional testing since it removes po-
tential developer bias and helps identifying unknown failure
modes. This study indicated that fault injection can be feasible
and applicable for testing the robustness and the dependability
of the embedded distributed system.
Randomization challenges: First of all faults need to be more
of the character of “nuisances” that the system should be able
to handle. We are using here the term nuisance to identify de-
lays, lost messages, invalid data, restarted instances, and so on.
We had good results by sending random messages and through
randomized delays. In fact, as described in Sections VII-A
and VII-B, this permitted to identify some errors that were
not identified by traditional testing. Then, we had the need of
automatic use case validation to ensure the detection of errors
introduced by the nuisances. Since nuisances are random, it is
not simple to reproduce errors. Possible solutions are to use
known seeds or to record and playback of events. Moreover,
good traces are needed for post-mortem analysis of a crash.
Context-specific approach: The fault injection strategy de-
pends on the context, although recurring patterns might be
probably identified. In particular, when considering embedded
systems, it is necessary to interact with domain experts to
understand which kind of faults should be injected, and also
personalize the implementation of specific faults.

Adoption goes beyond technicalities: Adoption in practice
goes beyond technicalities, thus involving also organization,
processes, and specificities of companies. Therefore, it is im-
portant to have a strong and continuous collaboration between
academia and industry. Iterative development methodologies
are a good strategy to enable continuous validation and col-
lection of feedbacks from practitioners.

B. Quality of findings

Even though the quality of system has been proven to
be quite high, unexpected faults that were not caught by
traditional testing have been detected, such as:

• fuzzing of signals has detected a weakness in the system
handling dynamically sized objects that caused a crash;

• randomized delays detected misconfigured timeout han-
dling. It is important to highlight that the manual test case
had the same mistake as the production code so this error
was missed.

The faults were identified and diagnosed by observing the
stack trace on the log files. Diagnosing the faults helped us
also in identifying the bottleneck of the distributed system.
This has been shown after injecting the message delay fault
type on the weak points of the system. The identification of the
weak points enables improvements in the system architecture.
For instance, Postmonkey helped to improve the software
architecture of the system. In a distributed system, there
are always dependencies between the components and some
dependencies are more critical than others. After a deep study
of the distributed system architecture at Ericsson, we identified
some critical components, whose failures can be potentially
due to the strong dependencies. For such dependencies, we
used message delaying as failure type for testing the timeout
mechanism. Specifically, we delayed the messages between
the critical components as well as tracked the system be-
havior through the log files. Under those circumstances, we
have discovered that the system will not act as it should
when delaying the messages at a specific time. In the long
run, software architecture can be improved by having lower
dependencies on those critical components. By having lower
coupling, components will be easier to replace, the chance
that a change in one component causes a problem in the other
components will be reduced, which enhances maintainability
and reusability, and the chance that a fault in one component
causes failures in other components will also be reduced,
which enhances robustness [25].

Moreover, detecting and diagnosing the faults also helped
in discovering more faults to inject.

C. Challenges in adopting the fault injection approach

In this study, we have met some challenges and barriers to
adoption of the fault injection approach.
Unrealistic results: Considering that we proposed a non-
deterministic testing approach the result of running such tech-
nique can be misleading. Doing a complete randomization of
the test cases might produce useless results since the generated
test case can be unrealistic. In order to mitigate this limitation,

we made our test cases less randomized such as having
time interval, specify the messages type, number of messages
and delaying time. For instance, when we implemented the
first fault type, which was sending random messages, the
system acts always differently. That was due to the fact that
the injection is performed on embedded distributed systems
with limited computation power. Sending a lot of random
messages without any time between them was misleading.
We overcome this problem by inserting delays between each
message sending. As a conclusion, having the time between
each sending gave us a reasonable and realistic indication.
Negative side effects: When sending a lot of random messages
without any time interval between them, the system will
probably crash since the computation power is limited on
the embedded components. As stated in [16] online testing
could produce negative side effects out of the tester’s control.
It is then important to take into account also policies that help
to prevent or ameliorate such adverse effects. Also, as stated
in [16], online testing could have a negative impact on non-
functional characteristics; this can be mitigated by trading off
testing accuracy with performance.

The strategy we adopted to avoid undesired crashes of the
overall system because of injected fault is as follows: (i)
Delaying signals - we make sure the delays fall within what the
system should handle; (ii) Fuzzing signals - we limit fuzzing
to faking Confirm/Rejects which the system should discard.

IX. CONCLUSION

This paper proposes a fault injection approach to testing the
robustness of distributed and embedded system with limited
computation power. We performed the study in collaboration
with Ericsson AB in Gothenburg, Sweden. This approach came
as a complementary to traditional testing.

As described in the paper, the approach detected some
unexpected faults. We observed also that fault injection can be
adopted to test embedded distributed system and dependency
bottlenecks can be identified. This approach provided the de-
velopment team at Ericsson with a better validation technique
that permits to reduce the number of unpredicted faults that
appeared during the operations on the customer’s sides.

As future work, we plan to replicate the study to other
organizations within Ericsson and to other companies to better
validate the generality of the approach. We plan also to
investigate steps that will permit to deploy the approach on
customer production networks.

Finally, additional fault types can be injected such as register
and memory faults, killing process, CPU overloads, slow down
network, fork bomb at a particular node, and drop network
packets for a duration of period at a certain rate, etc. It would

also be an area of interest to test a combination of faults. This
can be done by injecting a combination of faults in a different
order and at a different time.

REFERENCES

[1] S. Dawson, F. Jahanian, T. Mitton, and T.-L. Tung, “Testing of fault-
tolerant and real-time distributed systems via protocol fault injection,”
in Proc. of Annual Symp. on Fault Tolerant Computing. IEEE, 1996.

[2] F. Faghri, S. Bazarbayev, M. Overholt, R. Farivar, R. H. Campbell, and
W. H. Sanders, “Failure Scenario As a Service (FSaaS) for Hadoop
Clusters,” in Proc. of SDMCMM ’12. ACM, 2012.

[3] ISO/IEC/IEEE 24765:2010 Systems and software engineering - Vo-
cabulary, “Available at: https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:
24765:ed-1:v1:en.”

[4] A. Metzger, E. Schmieders, O. Sammodi, and K. Pohl, “Verification
and testing at run-time for online quality prediction,” in Workshop on
S-Cube, June 2012, pp. 49–50.

[5] E. Fredericks, A. Ramirez, and B. Cheng, “Towards run-time testing of
dynamic adaptive systems,” in In Proc of SEAMS2013, 2013.

[6] A. Bertolino, G. D. Angelis, S. Kellomaki, and A. Polini, “Enhancing
service federation trustworthiness through online testing,” Computer,
vol. 45, no. 1, pp. 66–72, Jan 2012.

[7] Y. K. Malaiya, “Antirandom testing: getting the most out of black-box
testing,” in Proc of Int. Symposium on Software Reliability Eng., 1995.

[8] Ericsson, “Mobility Report,” http://www.ericsson.com/res/docs/2015/
ericsson-mobility-report-june-2015.pdf, 2015.

[9] ——, “High Availability is more than five nines,” http:
//www.ericsson.com/real-performance/wp-content/uploads/sites/3/
2014/07/high-avaialbility.pdf, 2014.

[10] P. Ramachandran, P. Kudva, J. Kellington, J. Schumann, and P. Sanda,
“Statistical fault injection,” in Int. Conf. on Dependable Systems and
Networks With FTCS and DCC (DSN), 2008.

[11] Chaos Monkey Testing (CMT), “http://techblog.netflix.com/2012/07/
chaos-monkey-released-into-wild.html.”

[12] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner,
“Improving fault injection in automotive model based development using
fault bypass modeling.” in GI-Jahrestagung, 2013, pp. 2577–2591.

[13] “Apache Hadoop,” http://en.wikipedia.org/wiki/Apache Hadoop.
[14] “MapReduce,” http://en.wikipedia.org/wiki/MapReduce.
[15] “Anarchyape,” https://github.com/david78k/anarchyape/.
[16] M. Ali, A. Bertolino, F. De Angelis, G. De Angelis, D. Fani, and

A. Polini, “An extensible framework for online testing of choreographed
services,” Computer, vol. 47, no. 2, pp. 23–29, Feb. 2014.

[17] C. B. Seaman, “Software maintenance: Concepts and practice,” J. Softw.
Maint. Evol., vol. 20, no. 6, 2008.

[18] R. V. Binder, “Object-oriented software testing,” Commun. ACM, vol. 37,
no. 9, Sep. 1994.

[19] Q. Wang, F. Chen, H. Mei, and F. Yang, “An application server to support
online evolution,” in Proc of Int. Conf. on Software Maintenance, 2002.

[20] M. Canini, V. Jovanović, D. Venzano, D. Novaković, and D. Kostić,
“Online testing of federated and heterogeneous distributed systems,” in
Proceedings of SIGCOMM ’11. ACM, 2011.

[21] H. S. Gunawi, T. Do, J. M. Hellerstein, I. Stoica, D. Borthakur, and
J. Robbins, “Failure as a service (faas): A cloud service for large-scale,
online failure drills,” University of California, Berkeley, vol. 3, 2011.

[22] C. Woskowski, M. Trzeciecki, and F. Schwedes, “Assessing the appli-
cability of the let-it-crash paradigm for safety-related software develop-
ment,” Technical Report, 2013.

[23] A. Collins, D. Joseph, and K. Bielaczyc, “Design research: Theoretical
and methodological issues,” Journal of the Learning Sciences, vol. 13,
no. 1, pp. 15–42, 2004.

[24] “Wireless 802.11n,” https://en.wikipedia.org/wiki/IEEE 802.11n-2009.
[25] L. Bass, P. Clements, and R. Kazman, Software architecture in practice,

3rd ed. Upper Saddle River, N.J: Addison-Wesley, 2012.

https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:24765:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:24765:ed-1:v1:en
http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf
http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf
http://www.ericsson.com/real-performance/wp-content/uploads/sites/3/2014/07/high-avaialbility.pdf
http://www.ericsson.com/real-performance/wp-content/uploads/sites/3/2014/07/high-avaialbility.pdf
http://www.ericsson.com/real-performance/wp-content/uploads/sites/3/2014/07/high-avaialbility.pdf
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://en.wikipedia.org/wiki/Apache_Hadoop
http://en.wikipedia.org/wiki/MapReduce
https://github.com/david78k/anarchyape/
https://en.wikipedia.org/wiki/IEEE_802.11n-2009

	Introduction
	Context
	Related Work
	Fault injection
	Online Testing
	Chaos Monkey Testing
	Let-it-Crash Philosophy

	Research methodology
	The Postmonkey approach
	Sending random messages
	Delaying messages

	Implementation
	Inter Process Communication
	Automatic testing environment
	Sending random messages
	Delaying messages

	Validation and Results
	Sending random messages
	Delaying messages

	Discussion
	Lessons learned
	Quality of findings
	Challenges in adopting the fault injection approach

	 Conclusion
	References

