
Engineering the Software of Robotic Systems
Federico Ciccozzi∗, Davide Di Ruscio†, Ivano Malavolta‡

, Patrizio Pelliccione§, and Jana Tumova¶
∗Mälardalen University, Västerås - Sweden

†University of L’Aquila - Italy
‡Vrije Universiteit Amsterdam - The Netherlands

§Chalmers University of Technology | University of Gothenburg - Sweden
¶ KTH Royal Institute of Technology - Sweden

Abstract—The production of software for robotic systems is
often case-specific, without fully following established engineering
approaches. Systematic approaches, methods, models, and tools
are pivotal for the creation of robotic systems for real-world
applications and turn-key solutions. Well-defined (software) en-
gineering approaches are considered the “make or break” factor
in the development of complex robotic systems. The shift towards
well-defined engineering approaches will stimulate component
supply-chains and significantly reshape the robotics marketplace.

The goal of this technical briefing is to provide an overview on
the state of the art and practice concerning solutions and open
challenges in the engineering of software required to develop
and manage robotic systems. Model-Driven Engineering (MDE)
is discussed as a promising technology to raise the level of ab-
straction, promote reuse, facilitate integration, boost automation
and promote early analysis in such a complex domain.

I. DESCRIPTION OF THE TOPIC

Robots have been part of our daily life for several decades,
such as in manufacturing automation to cut and assemble parts,
or in medical field to perform extremely delicate surgeries.
Most recently, autonomous robots have shown a great promise
for future, from self-driving vehicles in transportation, to
robotic vacuum cleaners in households, to teams of mobile
robots in autonomous warehouse solutions. However, in the
production of software for robotic systems “usually there are
no system development processes (highlighted by a lack of
overall architectural models and methods). This results in the
need for craftsmanship in building robotic systems instead of
following established engineering processes.” as stated by the
H2020 Multi-Annual Robotics Roadmap ICT-2016 [7].

The use of ad-hoc development processes in general, and
software engineering approaches in particular, hampers reuse
and complicates the configurability of existing solutions. This
justifies the need of systematic approaches, methods, and tools
to (i) easily configure robots, or provide them with self-
configuration capabilities, (ii) specify robotic tasks in an easy
and user-friendly way, and (iii) instill intelligence into robots,
i.e. to make them able to take decisions on their own to manage
unpredictable situations. This shifts towards well-defined en-
gineering approaches will stimulate component supply-chains
and significantly impact the robotics marketplace.

In this technical briefing we focus on autonomous mobile
multi-robot systems (MMRSs) that are represented by a set
of robots operating as a team in a shared, potentially un-
known, and unpredictable environments. These MMRSs are

expected to be collaborative, effective, efficient, adaptive, and
reactive. Unlike multi-agent systems in general, MMRSs are
characterized by their physical properties, such as control and
communication constraints. When it comes to the engineering
of software specific for MMRSs, it is crucial to consider that
this kind of software is typically embedded, concurrent, real-
time, distributed, data-intensive and must guarantee system
properties such as safety, reliability, and fault tolerance [3].
The raised interests around the topic of software and system
engineering for MMRSs is testified by the existence of a
significant corpus of research work dealing with specific
aspects of MMRSs. For example, in [6] authors present an
architecture-centric approach for building self-adapting and
self-managing robotic systems. For the purpose of raising
the level of abstraction in developing MMRSs, the adoption
of component-based software engineering (CBSE) tailored to
robotics has been advocated in [3]. In [9] authors present an
approach for defining missions for swarms of drones via a
domain-specific modeling language and for generating low-
level instructions for each drone; the implementation of the
approach is available as an open-source project [1]. Finally,
the need for unification of software development for robots
is demonstrated by the recent emergence of Robot Operating
System (ROS) [8], that is nowadays considered to be the
standard platform among the robotics community.

II. SOFTWARE ENGINEERING FOR ROBOTIC SYSTEMS

When bringing intelligence to robots, the unescapable need
to provide specific capabilities, such as the human-like sense-
process-(re)act chain, arose. At that point, software came into
the picture and progressively gained importance eventually
becoming one of the core aspects in robotics development and
maintenance. This is the reason why an effective interplay of
software engineering and conventional robotics is essential.

Several initiatives related to software engineering for
robotics have been launched over the last years, such as:
the IEEE Technical Committee on Software Engineering for
Robotics and Automation, and the Journal of Software Engi-
neering for Robotics. In the specific case of MMRSs, innova-
tive software engineering approaches and methodologies able
to support the definition, the development, and the realization
of collective missions are needed. Several attempts have been
documented in this direction [2]. Unluckily, the excessive

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.167

509

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.167

509

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.167

509

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.167

511

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.167

507

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.167

507

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.167

507

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.167

507

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.167

507

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-C.2017.167

507

focus on performance issues led robotic engineering to neglect
crucial quality attributes of software-intensive systems, such as
reusability, flexibility, and interoperability.

This technical briefing shows why and how adopting and
adapting mainstream software engineering methodologies and
technologies towards a systematic, disciplined, and quantifi-
able approach throughout the system life-cycle can help in
solving a number of challenges for MMRSs. In particular, this
technical briefing focusses on the following challenges: (i)
Platform neutrality for tractable cross-platform development;
(ii) Systematic reusability that avoids isolated solutions which
cannot be easily reused nor combined; (iii) Orchestrating
concurrency managing simultaneous execution of multiple
tasks performed by independent entities; (iv) Context aware-
ness for meeting evolving environmental characteristics and
constraints during a mission execution; (v) Coping with uncer-
tainty that maintains desired degree of security, performance,
and dependability during and after adaptation; (vi) Dynamic
discoverability of available resources for automatic adjustment
of mission plans; (vii) Subsystems interoperability for coordi-
nating heterogeneous subsystems of an MMRS;(viii) Human-
robot synergy for having proper means of interaction between
humans and robots.

Dealing with these challenges is a very daunting task. In
fact it demands a set of assorted abilities for: managing ab-
stractions in MMRSs specifications, providing various degrees
of automation in MMRSs software development, and offering
means to enable analysis related to different concerns of
MMRSs missions at design time as well as at runtime.

Abstraction, automation, and analysis are the idiosyncratic
characteristics of MDE, which advocates the systematic use
of models as first class actors in the software life-cycle.
Models are meant to represent abstractions of real systems
that are analysed and engineered through a coherent set of
interconnected concepts precisely captured in metamodels.

During the technical briefing we motivate our vision that
MDE shows the traits needed for successfully supporting
development and maintenance of MMRSs, especially regard-
ing software. This is also the belief of the MARR [7] that
clearly states: “Model-driven software development (MDSD)
and DSL (domain specific languages) are core technologies
required in order to achieve a separation of roles in the
robotics domain while also improving compose-ability, system
integration and also addressing non-functional properties”.
Similarly, the TC-SOFT has identified MDE (together with
CBSE) as a key methodology for the future of robotic software
engineering, and we identified MDE as a potential enabler for
civilian missions of MMRSs [5] and mission-critical Internet-
of-Things systems [4]. In fact, MDE provides the possibility
to systematically and concurrently focus on different levels of
abstraction at which the involved developers can operate for
(i) improving the quality of MMRSs in terms of, e.g., safety,
reliability and reusability, (ii) reducing the inherent variability
and complexity of MMRSs, and (iii) promoting the reuse of
software and hardware components across MMRSs.

III. ORGANIZERS

Federico Ciccozzi is Assistant Professor at Mälardalen Univer-
sity, Sweden. His research covers many aspects of MDE and
CBSE, with focus on the embedded real-time domain. He is
involved in national and European projects, and leading a na-
tional project on cross-domain MDE for embedded multicore
systems with ABB Corporate Research, Alten Sweden and
Ericsson AB. http://www.es.mdh.se/staff/266-Federico Ciccozzi
Davide Di Ruscio is Assistant Professor at the University of
L’Aquila. His research interests are related to several aspects of
MDE. He is working on various European and Italian research
projects and he is applying MDE concepts and tools in various
application domains (e.g., service-based, autonomous, or open
source software systems). http://www.di.univaq.it/diruscio/
Ivano Malavolta is Assistant Professor at the Vrije Universiteit
Amsterdam, Department of Computer Science. His research
focuses on empirical software engineering, software archi-
tecture, model-driven engineering, and mobile multi-robot
systems. http://www.ivanomalavolta.com
Patrizio Pelliccione is Associate Professor at the University of
Gothenburg | Chalmers University of Technology. His research
topics are mainly in software engineering for robotics, soft-
ware architecture, MDE, and formal methods. In his research
activity Patrizio collaborated with several industries especially
in Sweden and Italy. http://www.patriziopelliccione.com/
Jana Tumova is Assistant Professor at KTH Royal Institute
of Tecnhology. Her research interests include formal methods,
control theory and robotics in general, and temporal logic-
based control of cyber-physical systems, and autonomous
robots in particular. https://people.kth.se/∼tumova

IV. ACKNOWLEDGEMENTS

Research partly supported from the EU H2020 Research and
Innovation Programme under GA No. 731869 (Co4Robots).

REFERENCES

[1] Darko Bozhinoski, Davide Di Ruscio, Ivano Malavolta, Patrizio Pellic-
cione, and Massimo Tivoli. Flyaq: Enabling non-expert users to specify
and generate missions of autonomous multicopters. In International Conf.
on Automated Software Engineering (ASE), pages 801–806. IEEE, 2015.

[2] D. Brugali and E. Prassler. Software engineering for robotics. Robotics
Automation Magazine, IEEE, 16(1):9–15, March 2009.

[3] D. Brugali and P. Scandurra. Component-based robotic engineering (part
I) [tutorial]. IEEE Robot. Automat. Mag., 16(4):84–96, 2009.

[4] Federico Ciccozzi, Ivica Crnkovic, Davide Di Ruscio, Ivano Malavolta,
Patrizio Pelliccione, and Romina Spalazzese. Model-Driven Engineering
for Mission-Critical IoT Systems. IEEE Software, 34(1):46–53, 2017.

[5] Federico Ciccozzi, Davide Di Ruscio, Ivano Malavolta, and Patrizio
Pelliccione. Adopting MDE for Specifying and Executing Civilian
Missions of Mobile Multi-Robot Systems. IEEE Access, 2016.

[6] G. Edwards, J. Garcia, H. Tajalli, D. Popescu, N. Medvidovic,
G. Sukhatme, and B. Petrus. Architecture-driven self-adaptation and self-
management in robotics systems. in Proceedings of SEAMS, 2009.

[7] EU H2020. Robotics 2020 Multi-Annual Roadmap For Robotics
in Europe - http://sparc-robotics.eu/wp-content/uploads/2014/05/
H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf. 2016.

[8] M. Quigley, J. Faust, T. Foote, and J.s Leibs. Ros: an open-source robot
operating system. In Proceedings of ICRA, 2009.

[9] Davide Di Ruscio, Ivano Malavolta, Patrizio Pelliccione, and Massimo
Tivoli. Automatic generation of detailed flight plans from high-level
mission descriptions. In ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, pages 45–55. ACM, 2016.

510510510512508508508508508508

