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I Two distinct methodologies for building models of the world

1. Logic: qualitative, symbolic and driven by domain theory
2. ML: quantitative, numeric and driven by computational

learning theory

tech/cov wide narrow

deep our goal symbolic

shallow data-based useless

I Discussion already mid-1990s: the rise of statistical learning
methods in NLP (Gazdar, 1996; Jones et al., 2000)
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I The success of deep neural network (DNN) approaches makes
the question of how these two methodologies should be
used/related/integrated apposite again
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Modularity and Deep Learning

I DNNs are not unconstrained neural networks but rather that
these networks have domain/task specific architectures that
encode domain theoretic considerations

I DNNs can be seen as a modular learning design of composed
functions
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http://www.asimovinstitute.org/neural-network-zoo/
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Neural Machine Translation

Decoder

Encoder

Life is beautiful < eos >

h1 h2 h3 h4 C d1 d2 d3

belle est vie La < eos >

0 / 0

Figure: Example Translation using an Encoder-Decoder Architecture
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Talking Robots

http://www.starwars.com/databank/c-3po
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Computational Approaches to Spatial Semantics

1. Pattern Recognition and Machine Learning Prediction
(classification)

Focus is on identifying features that have high-value
states in common - a shared label in a classification
setting - across a large, diverse set of training examples
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Image Captioning

Show, Attend and Tell: Neural Image Caption Generation with Attention. Xu
et al., 2015.
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Epic Fails

Building Machines That Learn and Think Like People. Lake, B. et al.
Behavioral and Brain Sciences (in press)
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Computational Approaches to Spatial Semantics

1. Pattern Recognition and Machine Learning Prediction
(classification)

2. Create Mechanistic Models that are Informed by Domain
Theoretic Consider

Focus is on creating a model architecture that reflects
domain theoretic considerations
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Understanding Space: Simulation/Intuitive
Physics/Imagination

Simulation as an engine of physical scene understanding. Battaglia, P. et al.
Proceedings of the National Academy of Sciences, 110(45), 18327-18332
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Semiotic Schemas

Fig. 13. The situation corresponding to, “There is a cup here. Something is touching the cup.”

Semiotic schemas: A framework for grounding language in action and
perception. Roy, D. Artificial Intelligence 167. Pages 170-205. 2005

13 / 31



Language, Logic and Machine learning

I For language the mechanistic approach can be informed by
logic

I Logical theories use functions and compositional operations
while neural networks learn and compose functions

I Logic based domain theory of linguistic performance can
inform the structural design of DNNs: model interpretability
and performance.
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TTR as a design formalism

Perceptual domain

I [[34,24,48],[56,78,114]. . . ]: PointMap
PointMap v list(list(Real))

I Object detection function

(Pointmap → set(

[
reg : Pointmap
pfun : (Ind→Type)

]
))

pfun = λx :Ind.chair(x)

I Individuation function

λr :

[
reg:Pointmap
pfun:(Ind→Type)

]
.

 a : Ind
loc : location(a, r .reg)
c : r .pfun(a)



Conceptual domain

(Dobnik, 2009; Dobnik and Cooper, 2017)
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Learning to compose neural networks

Andreas et al. (2016)1

What cities are in Georgia? Atlanta

and

lookup Georgia

find city

Georgia

Atlanta

Montgomery

Knowledge source

relate in

Network layout (Section 4.2)

find[city]

lookup[Georgia]

relate[in]

and

(b)

Module inventory (Section 4.1)

find

lookup

and

relate

(a) (c)

(d)

Figure 1: A learned syntactic analysis (a) is used to assemble a
collection of neural modules (b) into a deep neural network (c),
and applied to a world representation (d) to produce an answer.

1Thanks to Mehdi Ghanimifard for this reference.
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Learning to compose neural networks, II

black	and	white

Georgia

Atlanta

Montgomery

Georgia

Atlanta

Montgomery

exists

true

find bird

describe color

find state(a) (b)

(c) (d)

Figure 2: Simple neural module networks, corresponding to
the questions What color is the bird? and Are there any states?
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Computational Approaches to Spatial Semantics

1. Pattern Recognition and Machine Learning Prediction
(classification)

2. Create Mechanistic Models that are Informed by Domain
Theoretic Consider

3. Learning strategies beyond presentation of data

Focus is on optimising the learning procedure through
interaction
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Dialogue games as learning strategies

(Dobnik and de Graaf, 2017)

19 / 31



Dialogue games as learning strategies

Direct instruction: objects

U: This is a cup.

S: [Object is focused on and observed.]

S: OK, I learned a cup.

Direct instruction: spatial relations

U: The book is to the right of the mug.

S: [Objects are focused on and observed.]

S: OK. This relation is called “to the right of”.

S: [Objects are focused on and observed.]

U: Where are the objects?

S: The book is to the right of the mug.
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Dialogue games as learning strategies

Reinforcement from feedback

U: What is this?

S: [Object is focused on and observed.]

S: This is a cup.

U: That is correct.

S: [Observation is added to the models.]

Self-initiative: spatial relations

S: [Objects are focused on and observed.]

S: One of the objects is book, the other one is box. Please tell
me where things are.

U: The book is to the left of the box.

S: OK, this relation is called “to the left of”.
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Object recognition

Results over 4 rounds: direct instruction only

→ apple banana bear book cap car cup paint shoe shoe-box C-NI

apple .343 .227 .076 .046 .099 .058 .126 .074 .053 .166 .116
banana .201 .357 .058 .035 .085 .087 .148 .066 .046 .124 .155
bear .080 .121 .260 .074 .089 .091 .120 .099 .074 .136 .123
book .142 .233 .074 .496 .114 .197 .246 .130 .085 .220 .250
cap .122 .208 .076 .049 .146 .096 .103 .083 .061 .114 -.062
car .104 .183 .053 .067 .077 .414 .119 .076 .069 .149 .231
cup .099 .145 .063 .066 .091 .052 .330 .094 .054 .120 .185
paint .119 .140 .075 .076 .083 .147 .121 .221 .062 .111 .075
shoe .078 .123 .070 .056 .079 .116 .124 .076 .319 .103 .196
shoe-box .190 .332 .099 .188 .145 .305 .313 .166 .111 .376 .044

C-NI ranking: book > car > shoe > cup > banana > bear >
apple > paint > shoe-box > cap
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Spatial relations: overall results

16 locations around the landmark tested randomly twice: direct
instruction only

Match Evaluator 1 Evaluator 2 Evaluator 1 + 2
Independent 8 0.25 7 0.2188 15 0.2344
Secondary 11 0.3438 13 0.4063 24 0.375
Indep. + Second. 19 0.5938 20 0.6251 39 0.6094
Incorrect 13 0.4063 12 0.375 25 0.3906

Total 32 1 32 1 64 1
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Spatial relations: confusion matrix

When some contextual parameters are missing

behind front left right close near Total

behind 4 2 1 0 0 2 9
front 0 5 3 3 6 0 17

left 0 6 1 0 0 0 7
right 4 1 3 3 0 1 12
close 1 9 1 0 1 2 14
near 1 1 1 0 1 1 5

Total 10 24 10 6 8 6 64

I Ao = 0.2344, κ = 0.0537
I Appropriate alternatives:

I topological - projective: “left” as “front”, “close” as “front”
I FOR variation: “right” as “left”
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Conclusions

I Simply applying a powerful learning algorithm to a large
dataset (pattern recognition) is problematic if the focus is
solely on ML tasks rather than on domain theoretic
considerations.
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Conclusions
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Conclusions

I However, DNNs have modular architectures that can be
specifically tailored or structured to the needs of a specific
domain or task

I Introduce domain relevant structural constraints into the
model via the network architecture

I Early examples: (Feldman et al., 1988; Feldman, 1989; Regier,
1996)

I The example of Johnson et al. in Marco’s earlier talk fits
within our understanding of this approach.
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Conclusions and future research

I Relating and understanding the modular design of DNNs to
models of language and cognition provides an interesting
research question for the future.

I Pattern recognition
I Mechanistic architectures
I Learning is through interaction
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