Dental erosion and its growing importance in clinical

practice: From past to present

Ann-Katrin Johansson¹, Ridwaan Omar², Gunnar E. Carlsson³, Anders Johansson⁴

¹Department of Clinical Dentistry– Cariology, Faculty of Medicine and Dentistry, University of Bergen, Norway, ²Department of Restorative Sciences, Faculty of Dentistry, Kuwait University, Kuwait, ³Department of Prosthetic Dentistry, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden, ⁴Department of Clinical Dentistry – Prosthodontics, Faculty of Medicine and Dentistry, University of Bergen, Norway

Running title:

Keywords: bruxism, diagnosis, lifestyle, prevalence, prevention, tooth abrasion, tooth attrition, tooth erosion, tooth wear, treatment

1

Corresponding author

Ann-Katrin Johansson, Associate Professor Department of Clinical Dentistry – Cariology Faculty of Medicine and Dentistry, University of Bergen, Årstadveien 17, 5009 Bergen, Norway Email: Ann-Katrin.Johansson@iko.uib.no Telephone: +47 55589966

Abstract

Since the mid-1990s, the focus of studies on tooth wear has steadily shifted from the general condition towards the more specific area of dental erosion; equally, a shift has occurred from studies in adults to those in children and adolescents. During this time, understanding of the condition has increased greatly. This paper attempts to provide a critical overview of the development of this body of knowledge, from earlier perceptions to the present. It is accepted that dental erosion has a multifactorial background, in which individual and lifestyle factors have great significance. Notwithstanding methodological differences across studies, data from many countries confirm that dental erosion is common in children and young people, and that, when present, it progresses rapidly. That the condition, and its ramifications, warrants serious consideration in clinical dentistry, is clear. It is important for the oral healthcare team to be able to recognize its early signs and symptoms and to understand its pathogenesis. Preventive strategies are essential ingredients in the management of patients with dental erosion. When necessary, treatment aimed at correcting or improving its effects might best be of a minimally-invasive nature. Still, there remains a need for further research to forge better understanding of the subject.

1. Introduction

Interest in dental erosion and its role in tooth wear increased considerably since the mid-1990s. Early studies on tooth wear in humans were, in the main, based on teeth from archeologically-obtained skulls. In later studies, contemporary adult populations were examined, but in neither the early nor the later periods of study, erosion was rarely, if ever, mentioned as a possible etiological factor [1] (Figure 1). The definition and diagnosis of dental erosion have not been agreed upon among researchers and clinicians, which can explain some of the confusion and perhaps the earlier lack of interest in the subject [2]. The diet of our ancestors was often tough and contained coarse particles, which required heavy chewing. The resulting wear facets were further influenced by the abrasive components of the food. Modern diets would appear to lack such abrasives but can contain acids, which can demineralize enamel and potentiate attrition and abrasion. Nevertheless, there are findings supporting the existence of dental erosion even in medieval populations [3,4].

The earliest form of tooth wear was found mainly on occlusal, incisal and proximal surfaces, whereas modern erosive tooth wear has additional characteristics that include the buccal and palatal/lingual surfaces. Tooth wear in archeological material was, from an anthropological point of view, considered pathologic only if the function of the tooth was lost [5]. This may be one reason why dental erosion may have been overlooked as a possible cause in studies of tooth wear in those populations even though its morphological features sometimes have similarities with what we see today (Figure 2).

A further change in emphasis regarding the subject occurred in the mid-1990s: studies on tooth wear shifted from that of adult wear to wear in children and

adolescents, as well as from "general tooth wear", i.e. attrition and abrasion, to giving greater attention to the significance of etiological factors resulting in erosive tooth wear or dental erosion. Recent studies from a large number of countries all over the world have confirmed that the prevalence of erosive wear, especially among children and adolescents, is high (Table 1). Besides this, some longitudinal studies show that the occurrence of erosion is increasing and that erosive lesions that are already present progress rapidly [6-8]. Even if the prevalence rates vary substantially, it is evident that dental erosion is a common finding in populations from all over the world, especially among children and adolescents. During the past few years, definitions of diagnosis and grading of the erosive lesions have been highlighted, and it is to be hoped that such moves towards greater standardization may lead to greater concordance between studies conducted and the methods used. As a result of these findings, dental erosion deserves serious consideration in clinical dentistry today. Despite the common finding of an increase of tooth wear, especially in the younger population during the last decade, the number of publications in PubMed dealing with, for example dental caries, surpasses studies on dental erosion by a factor of over 20: over the past 10 years, obtaining 335 hits for dental erosion; 8750 for dental caries.

This paper is not a systematic review, which would have needed a more focused aim than is presently the case. It was also obvious from the literature review conducted that very few papers would have fulfilled the requirements of highest-ranking evidence, according to the hierarchy of evidence-based medicine, i.e. randomized controlled trials (RCTs) and/or systematic reviews of RCTs. Given that, many of the selected articles present valuable findings that add to the body of knowledge on dental erosion. It is, therefore, the purpose of this paper to give an overview of current knowledge of dental

erosion, based on a scrutiny of the literature.

2. Etiology of dental erosion

The etiology of dental erosion is conventionally divided into "extrinsic" and "intrinsic" factors [9]. Any of the acidic products that we put into the mouth, i.e. what we eat and drink, but also what has been termed occupational-related erosion, often caused by airborne acid that reaches the teeth, e.g. in workers in certain industries, or people who are wine taster [10-15], are considered "extrinsic" factors. There has been a considerable increase in the intake of soft drinks in recent decades, and these often are high in acidic content [16]. It is clear that, in children and adolescents today, the dominant causative factor for erosion is soft drinks [17-20] (Figures 3, 4).

The "intrinsic" factors include various diseases and habits, which leads to an influx of acidic stomach content into the oral cavity, and so influencing and/or affecting the teeth. In these cases, for example in patients suffering from eating disorders and gastroesophageal reflux disease (GERD), vomiting and regurgitation, there is an increased risk for erosion [21-25] (Figures 5, 6). A comprehensive review of GERD appears in this Special Issue [26]. Rumination is a special form of gastric disease which is believed to affect mainly intellectually disabled? patients, although its occurrence in the normal population may have been underestimated [27]. The condition involves GERD in combination with voluntary or involuntary regurgitation of swallowed solid food which is then re-chewed and re-swallowed; the erosive damage might well be severe (Figure 7).

A large number of diseases and syndromes are associated with dental erosion. While the background to this can be that both "extrinsic" and "intrinsic" factors are at Anders 11-11-1 14.44 **Kommentar:** AKJ- Yes this is difficult, I will check further RO: OK, I leave it to you...

play, the net effect may be that acid reaches the tooth surface while there is also present a deterioration in the quantity/quality of saliva, a reduction of oro-motor function, various medications, or mouth-breathing. Examples of these, in addition to GERD and eating disorders, are diabetes, high blood pressure, cerebral palsy, salivary gland agenesis, Sjögren's and Down syndromes, and drug abuse, such as alcohol and ecstasy, but not excluding the caffeine-dependence that cola drinks can induce [28-31]. One consequence of the modern lifestyle and the various lifestyle-related diseases of today is that the dentition is more frequently than earlier times, exposed to acidic challenges; and the consequent increased risk for dental erosion [32]. This somewhat sudden change in lifestyle, resulting in more acidic challenges for the dentition than earlier, can be compared with the lifestyle change following the 2nd World War that caused a large increase in sugar consumption, which was associated with the subsequent increase in the incidence of dental caries [9]. Although knowledge about dental erosion has improved in recent years, there is an urgent need for further research in order to better and more fundamentally understand its occurrence.

3. Clinical characteristics of dental erosion

Dental erosion is defined as "loss of dental hard tissue by a chemical process that does not involve the influence of bacteria" [33]. It occurs as a result of acidic attacks during simultaneous unsaturation of both hydroxyl- and fluor-apatite in saliva, causing loss of dental hard tissue, layer by layer [34]. Early enamel erosion causes no clinical discoloration or softening of the tooth surface and is, therefore, in the clinical situation, difficult to detect both visually and/or by tactile examination. In addition, any patient symptoms, in these early stages, are often absent or very limited. More pronounced

changes in macro-morphology occur when the erosive damage is more severe. The condition will then be easier to recognize and more likely to present symptoms [2] as well as affecting the oral health-related quality of life of patients [35].

Earlier it was stated that an eroded surface always gave the impression of being a matt surface [36]. It was also stated that dental erosion only could be diagnosed on teeth that had no opposing occlusal contacts [37]. Today it is understood that the surface appearance of an erosive lesion is either blank or matt and that erosion can be diagnosed even if the tooth surfaces have opposing occluding contacts. The erosive lesion can be uneven and produce small concavities. Most often, however, the surface is slightly rounded or flat and sometimes it gives the impression of having "melted" [17] (Figure 3b).

In today's populations, dental erosion occurs on all tooth surfaces but is common palatally on maxillary anterior teeth and on occlusal surfaces of lower first molars [17,38]. Proximal erosive lesions are difficult to diagnose but are probably rare, whereas a cervical shoulder formation, as well as the reversed V-sign on maxillary central incisors are more common (Figures 4, 8). "Cupping" is a concavity in the enamel, usually on a cusp tip, with or without dentinal involvement, is a common sign of dental erosion, and in posterior teeth they are usually located on first molars especially in the lower jaw (Figure 9). Cuppings are strongly correlated with dental erosion and should be carefully looked for as it has been stated that they can be regarded as an indicator of the onset of erosion [39]. In advanced cases of erosion, the pulp can be visible through the remaining tooth substance. This is especially the case in the maxillary central incisors in the primary dentition but can also be seen in the permanent dentition (Figures 3, 10).

On the basis of archeological data, populations from the past experienced endodontic complications that were mostly related to tooth wear whereas today they are most often related to dental caries [40]. While progression of the wear observed in skull materials was considered as "linear", indeed even allowing age determination [41], the wear in contemporary populations may progress as a combination of "linear" deterioration, but also superimposed "bursts", possibly coinciding with the presence of certain lifestyle factors or lifetime events [42]. Since episodic wear does not preclude the occurrence of a more slowly progressing "background" wear of the occlusal surfaces, it adds a further dimension to the phenomenon of wear [1], and, most importantly, to its management. It will be evident that the loss of tooth substance brought about by dental erosion may at some stage present dissatisfaction for patients; it is to be hoped that at an early enough stage the attending dentist will have identified the matter, informed the patient and implemented an initial preventive strategy. However, actual complaints from the patient are more likely in the later stages, resulting in aesthetic, orthodontic and functional complications and/or be associated with sensitivity and pain [43], most of which will require the consideration of restorative and other interventions.

4. Other types of tooth wear and its relation to dental erosion

Tooth wear has a multifactorial etiology and is usually a result of more than a single mechanism [44]. In addition to erosion, other types of wear can occur in parallel. This includes, for example, attrition (tooth wear caused by contact between occlusal/incisal surfaces) and abrasion (tooth wear caused by a foreign body such as a toothbrush, or biting on a hairpin or pencil).

It is well recognized that enamel recently softened by acid, will/may/can wear easier by concurrent mechanical impact, compared to enamel that was not so softened [45]. Today, there is evidence that a key element in a severely worn dentition is erosion, and that attrition and abrasion are of lesser importance [1],46-48].

There is no strong support for the (previously) common belief that bruxism is the main cause of tooth wear. It has been shown that in individuals with tooth wear and simultaneous bruxism, erosion and not attrition (bruxism) is the dominant etiological factor related to the loss of tooth substance [49]. Whether bruxism is a causative factor in tooth wear is still not fully understood, but it is fair to state that it has probably been overestimated [50]. If strict diagnostic assessment of bruxism is carried out (e.g. poloysomnography), no clear conclusions can be drawn about the role of either bruxism in tooth wear or in relation to failing restorations [50,51]. In addition, it is feasible, even likely, that the tongue can influence the loss of tooth surface by abrasive action on teeth, following their "softening" by an acid attack. Whether the tongue might also act as a reservoir for acid after an acidic challenge has been discussed. This may not be the case after intake of an acidic drink since the pH on the tongue surface recovers very quickly after drinking [43]. However, in cases of regurgitation/vomiting, a low pH on the tongue after an acidic challenge may persist for longer.

4. 1. Non-carious cervical lesions

Non-carious cervical lesions (NCCLs) are by tradition often considered equivalent to toothbrush abrasion. However, research has shown that the cause of these injuries cannot be blamed on intense or improper brushing techniques alone, as they may occur subgingivally, in individuals who seldom brush their teeth, in archeologically-recovered

9

Dr-Ridwan 11-11-1 14.44 **Kommentar:** Well there will be another article I believe in this Special Issue which takes a different view – but I think that "debate" will make it a small but interesting little Issue1. AJ: removed "convincing" RO: Very good. material (clearly before the toothbrush era), and even in animals [17, 52-57].

Definitions of the various forms of NCCL are often imprecise which may be one explanation for the wide range of prevalences reported. Three types can be easily observed and/or be discernible, namely a shallow cervical lesion, a grooved cervical lesion and a wedge-shaped cervical lesion [32]. The most common NCCL is the shallow cervical erosion. NCCLs appear to develop with age from a shallow lesion into the other types mentioned, with wedge-shaped lesions being most prevalent in older adults. NCCLs are common on the facial and buccal surfaces of the maxillary anterior and premolar teeth and the mandibular premolar teeth. [32].

Significant correlations have been found between NCCLs and the presence of occlusal erosive lesions as well as occlusal attrition [2, 58]. Wedge-shaped NCCLs have been called abfractions, assumed to be caused by heavy stress on the teeth (viz. due to heavy chewing or bruxism), or in combination with an acidic challenge which will result in strain microfractures along the buccal cemento-enamel junction, making the area more prone to substance loss when stressed [53, 59, 60]. On the other hand, wedge-shaped cervical lesions have also been identified on teeth without occlusal contacts. The theory has, not surprisingly, received criticism due to lack of robustness of the evidence [61].

A review concluded that toothbrushing, with or without toothpaste, only minimally contributes to the development of wear of enamel, whereas toothbrushing in combination with an acidic diet may be linked to dentin wear and hypersensitivity [62]. It is likely that NCCLs have a multifactorial aetiology, including many factors besides toothbrushing [63], but also that toothbrushing in the presence of acid may contribute to a more rapid development of NCCLs [62, 64]. As there is near consensus today that the Anders 11-10-31 15.53 Kommentar: Grippo 2004, inserted as ref

Gunnar E Carlsson 12-12-12 16.16 Formaterat: Typsnitt:12 pt, Engelska (Storbritannien) Gunnar E Carlsson 12-12-12 16.15 Borttagen: 53

most important etiological factor for NCCLs is erosion, preventive measures to reduce acidic challenges on the teeth is essential in managing patients with NCCLs.

5. Diagnosis and grading of dental erosion in the clinic

Approaches to diagnosis and recording are/have been based upon cervical, buccopalatal, or inciso-occlusal surfaces, and full mouth/partial mouth or combinations thereof. In addition, selection criteria, sampling technique and age composition have varied. Data obtained from different studies are, therefore, often difficult to compare, which leaves the epidemiological basis for the occurrence of dental erosion uncertain Kommentar: Ref? Ridwaan? RO: Does not come to mind off-hand, let's leave it for now – can be added later in revision?

[68]. Both full mouth recording, involving grading of all teeth, and partial recording, involving only specific marker teeth, may be used. Generally, full mouth recording is more time consuming for both dentist and patient and is more feasible for research than for routine clinical use. The marker teeth to be used for clinical recording should be ones that are commonly affected by erosion as well as having easily detectable clinical features (when erosion is present). In this regard, a simplified erosion partial recording system (SEPRS) has been developed, viz. using maxillary central incisors palatally and cuppings on lower first molars in the permanent dentition (total 4 surfaces) and maxillary central incisors palatally and cuppings on all four molars in the primary dentition (total 6 surfaces) (scoring by using Tables 2 and 3). By using this system, specificity and sensitivity close to 100% were obtained in relation to scoring of all maxillary canines/incisors and first permanent/all primary molars [66].

6. Prevalence of dental erosion

Cross-sectional population studies of dental erosion have reported a varying prevalence (Table 1). The interpretation of early studies was that the presence of erosion was increasing among children and the youth; but this was with some reservation as comparative/longitudinal studies did not exist. That the most severe damage found was on the palatal surfaces of maxillary anterior teeth caused some confusion since the focus had previously been on occlusal and incisal wear. Today, it has been confirmed in many countries, that dental erosion, particularly palatal damage of the upper front teeth, lesions on the palatal surfaces of the maxillary anterior incisors, are common among children and young people.

Recent longitudinal studies in children and adolescents are of special value given

the limitations of non-comparability of earlier studies. A longitudinal study from Germany showed an increase in erosive damage in children between 1977-87 and 1990-99. The number of lesions nearly doubled during this period of time; erosion into dentin on at least one primary tooth increased from 18 to 32 %, and on the first mandibular molars from 4 to 9 % [6]. Similar findings have been reported in British adolescents [69]. In the UK, 27 % of 12 year-olds had developed new or more advanced erosive damage at age 14. Lesions into the dentin were noted in 5 % of 12 year-old children, which by age 14 had increased to 13 %. The corresponding figures for erosion confined to the enamel were 56 and 64 % [7]. In a recent study from the Netherlands that followed children from the age of 12 to the age of 15, the incidence of new dental erosion decreased during this 3-year period while the prevalence of deep enamel/dentin erosion increased from 2 % to 24 % in children who already had erosion at the age of 12 years [8].

Gunnar E Carlsson 11-11-1 14.57 Kommentar: We must be consistent dentin or dentine. Eng or Am Eng?. AJ. HAR ÄNDRAT HELA DOKUMENTET TILL dentin RO: Let's stick with US, dentin?

6.1. Relationship between cuppings, NCCLs and dental erosion

The presence of cuppings on first molar teeth is widely accepted as a clinical sign of erosion. In a sample of Saudi young men, cuppings on the first molars were found in 49 % of individuals [17]. In high and low erosion groups from the same sample [17] the prevalence of cuppings was 64 % and 41 %, respectively [18]. German children with erosion showed 87 % cuppings at age 11 and 94 per cent at the age of 16 [6]. Australian studies have shown that cuppings are both more frequent and larger in size in erosion patients younger than 27 years compared to older erosion patients. This has been interpreted as a result of a lifestyle change that led to an increased consumption of acidic drinks, a choice which was seen as far more pervasive among youngsters [39].

Prevalences of cuppings in 5-6 year-old, 13-14 year-old and 18-19 year-old Swedes were 72 %, 46 % and 66 %, respectively, and had a significant correlation with the presence of erosion on anterior maxillary teeth [66].

NCCLs were noted in 25 % in an unselected material of young men, while in patients groups with high and low erosion the prevalence was 58 % and 10 %, respectively [18]. Among Swedish children at the age of 5-6 years NCCLs were found in 44 % of the individuals, among 13-14 years in 87 % and among 18-19 years in 98 % [66]. In the latter study, a significant correlation between mean erosion scores on maxillary anterior permanent teeth and number of buccal NCCLs was found for the groups of 13-14 years and 18-19 years but not for primary teeth (group 5-6 years). Others have made similar findings [58]. A quarter of the subjects in one study showed wedge-shaped lesions, abfractions, and 5 % of all teeth exhibited such lesions [63] and if other more indistinct types of NCCLs were included, a prevalence of 62 % was reported of the subjects investigated [64].

7. The individual's defense against erosion

Studies of both primary and permanent teeth have shown that tooth surface hardness plays a role in the development of erosive damage. Although primary teeth are softer than permanent teeth, the erosive process progresses at the same rate on both types of teeth. The erosion of deciduous teeth, would, therefore, manifest itself more quickly than it does in permanent teeth [70-73].

Saliva is one of the most important defense mechanisms for dental erosion. Oral clearance of an acidic product varies individually with the salivary secretion rate but also by the individual's ability to swallow. It has been demonstrated that a dry-mouth

individual runs a higher risk of erosion than an individual with normal salivary secretion rate [74], and that children with erosion, despite having low caries activity, have saliva with properties similar to saliva of children with high caries activity [75]. It has also been suggested that salivary buffering capacity is of greater importance in cases of erosion compared to that of dental caries [76]. In this respect, it should be noted that children normally have a lower salivary secretion rate than adults [77] and also a lower capacity of swallowing.

The pellicle that saliva forms on teeth, varies in thickness not only in between individuals but also between different locations in the mouth. Studies have shown that the salivary pellicle, depending on its thickness, offers some protection for acid erosion on enamel [78, 79]. However, on a newly eroded surface a rapid build-up of new pellicle will adapt strongly to the eroded surface, thus hindering remineralization. The capacity of a pellicle to protect against erosion was shown to be limited in the face of a weak acidic challenge on enamel, and nonexistent for such a challenge on dentin [80]. It will be clear that the various factors influencing pellicle and plaque formation can be decisive for where erosive damage will occur, and for its severity. It has been suggested that different protein interactions may be of importance in this regard [81], one such factor being salivary concentration of urea [43, 82].

The importance of method of consumption has been investigated regarding drinking. The method of drinking, viz. how an acidic beverage is drunk, is of great importance for the outcome of the erosive attack. A "retaining" drinking technique, i.e. keeping the drink in the mouth before it is swallowed increases the risk of erosion as the contact time between the tooth and drink is extended. It has been shown by clinical research that patients with high erosion more frequently use a "retaining" drinking

technique than patients with a low degree of dental erosion. Method of drinking is assumed to depend on many different factors, such as perceived taste, quantity of carbonic acid and the ability to swallow [43, 83] and maybe even a person's personality.

Oral hygiene habits are correlated with erosion, and especially so if they are carried out in conjunction with an ongoing acidic attack on the surfaces of the teeth [84]. It has been suggested that the acid-induced, softened tooth surface needs about an hour in the presence of saliva to remineralize, and so be better able to resist abrasion from toothbrushing [85]. It has been reported that patients with erosion often have good gingival conditions and a small amount of plaque [43]; it is also known that a more methodical, rigorous oral hygiene technique is associated with erosion to a greater extent than does a more sporadic and less systematic method [18]. That being so, this is not meant to imply that the proven benefits of good oral hygiene practice should be compromised "for the purpose of avoiding erosive wear".

Anders 11-11-1 15.05 Kommentar: AKJ- Ridwaan, this is difficult to understand...can you make it more easy... RO: Agreed, this is clearer I think.

8. Lifestyle and behavioral factors and dental erosion

It is well known that both oral health and general health are affected by lifestyle and behavioral factors [86-88]. Lifestyles change over time and often reflects societal factors. These factors commonly include food choices and drinking habits, level of physical activity, stress-related disorders and/or abuse of substances, amongst others.

A significant change in today's lifestyle, as mentioned earlier, is the sharply increasing consumption of acidic beverages mainly in groups of children and young people [16, 89, 90]. Another example is that people choose a new "healthy lifestyle", the net, unplanned outcome being that they have a diet with an increased content of acidic products. Examples of this are vegetarians and those who diet or fast in order to

lose weight [91-93]. The desire to keep fit can be tied to the need to drink plentifully when training in the gym, on the track, or at home; the risk here is of taking a sour drink, and often under conditions of a deteriorated salivary condition [94,95].

A more "unhealthy" lifestyle can similarly have negative implications for the risk of erosion. Stressed, perhaps over-worked, take a quick lunch "on-the-run", control the heartburn that they likely to have with medication that may relieve a gastrointestinal problem, but can also lead to reduced salivary secretion [96]. Similarly, drug abusers [97-99], those, such as the young IT freak who stays awake through the night with the help of a caffeine-containing cola drink, and others living relatively "unhealthy" lives, are at risk for erosion. Prevalence of dental erosion appears not to follow a clear socio-economic pattern [100-102] or to demonstrate direct sex differences [100,103-105], although it does vary between different age groups. In China, 3-5 year-old children generally show a low prevalence of erosive tooth surface loss. The children with erosion had parents with higher education who also, to a greater extent than others, embraced the Western way of life and let their children have frequent intakes of fruit drink in the baby bottle just before bedtime [106].

The complex interactions among social, behavioral and circumstantial factors that contribute to the development of dental erosion are very important considerations in furthering our understanding of, and managing, the condition. Although this is a complicated task, the growing challenge the condition poses requires that every effort be made in this research direction.

9. Clinical aspects

Attempts have been made to develop grading systems of the severity of wear that would

have applicability in the clinical setting. A recent development is a screening and monitoring system (BEWE) that is based on treatment need categories [107]. The proponents regard the system as an important tool that has the possibility to become an integral part of the regular oral and dental clinical examination that patients undergo at routine recalls; the benefits, they imply, outweigh the oversimplification of a complex and varied condition. Thus, there has been strong criticism leveled against the BEWE system due to several shortcomings: for example, not considering pain, sensitivity or poor aesthetics, which are crucial factors in the clinical decision making determining the need for intervention, or not [108]. The assessment of the need for treatment for erosive damage must always be made on an individual basis taken into account a multitude of factors. This means that the same degree of damage can be in need of treatment in one patient but not in another. Naturally, such complex decisions cannot be made from a scoring system only. A patient diagnosed with erosion should be followed up with individualized recall periods, and an assessment of the possible progression from the different investigations should be made. If necessary, a medical consultation and/or complementary medical investigation/examination should be carried out.

9.1 Preventive strategies as the first line in management

Prevention will frequently involve a need for lifestyle changes, not only for the individual but also for the whole family. To effectively eliminate or reduce the acidic effect on teeth is clearly of far greater value than, for example, recommending treatment with different fluoride products. These have a more limited clinical effect in dental _____ erosion [109-115], even if their positive effect in the prevention of dental caries is well established. The role of fluoride in the erosion process is considered to be far more

Ridwaan Omar 11-11-1 15.14

Kommentar: The BEWE as a screening device for general dental practitioners may have a place, even if there are clear limitations... AKJ-no, it is based on a perioindex (CPITN) and you have to look for the worst eroded tooth in a sextant...completely useless in the clinic. For example upper front: 11 is the worst...the other is not registrered...what are the monitoring... RO: understood, about its origin. But I do wonder if the discussion here is any different from the one about other (medical) screening programs...breast cancer, and so on...sensitivity/specificity are some of the issues I guess.

Anders 11-10-31 18.03 Kommentar: AKJ –limited twice...Pls Ridwaan, help...

limited [116]. The use of neutralizing products such as antacid drugs has been shown to increase intra-oral pH after an acidic challenge [117, 118], while rinsing with bicarbonate has not [119]. A large variety of dental care products for prevention of dental erosion is on the market but there is no formula or product available today that provides adequate protection against erosion [120]. A product that may be promising, however, may be one containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) [121].

The erosive potential of food and drinks is a measure of its capacity to demineralize tooth substance. In general, erosive tooth wear on enamel takes place if the pH is below 5.5. However, studies have shown that modification of this critical pH is possible by addition of, for example, calcium or phosphate to drinks [122, 123]. It does not appear that this method of prevention is commonly applied today.

The young child with eroded primary teeth is a challenge. It may, however, give an opportunity for preventing erosion in the permanent dentition. Advice and information about dental erosion at the right time can, in many patients, fully or partly, prevent further damage, while in other patients it can be more less successful. However, it has been shown that even in cases of severe erosion, for example in connection with eating disorders, information and prophylaxis can reduce the risk for development of erosive damage [124]. To promote a healthier behavior among adolescents, their choice of lifestyle needs further investigation and collaboration between different types of healthcare workers.

9.2 Restorative treatment

It would not be an overstatement to say that all clinical decision-making related to

Ridwaan Omar 11-11-1 15.18 Kommentar: How about deleting this sentence as it says the same as first part of previous sentence and include ref 116 with 109-116?

Ridwaan Omar 11-11-1 15.19 Kommentar: Addition to what? AKJ- to drinksok? RO: OK

interventional procedures come down to a careful weighing of the benefits and the risks of the treatment options being considered. The restoration of teeth with tooth surface loss is no exception, and it is certainly not necessary to restore all cases of tooth surface loss. Furthermore, there are no clear guidelines for appropriate restorative treatment of erosive damage, and there is a striking lack of evidence regarding the long-term outcomes of any particular treatment methods and material. All this calls for caution in clinical decision-making [50]. In the young dentition, composite restorations constitute the mainstay of restorative interventions, while expensive conventional fixed and removable prosthodontics was, and still remains, at the center of rehabilitation of the extensively worn adult dentition – when treatment is indicated. Such treatment is also complex and generally highly invasive, adding to the dilemma of having to further remove tooth substance for retentive needs when faced with already erosively-reduced tooth. To re-emphasize the previous section, prevention is the golden rule for success.

Luckily, in many cases of wear and especially in the young patient, the focus of restoration will be concentrated to the anterior segment of maxillary teeth, usually for aesthetic reasons, but not exclusively so. The problem of restoring worn anterior teeth when little available interocclusal space exists is apparent. In this regard, a less radical alternative to complete occlusal reconstruction, based on the principles of combined forced intrusion of anterior teeth and supra-eruption of posterior teeth was first described by Dahl et al. [125]. The method has consistently been shown to be reliable in clinical studies [126-129). Most children and adolescents deemed to require restorative treatment can be treated with a Dahl approach, or modifications thereof. Several such modifications have been described following the original report, including placement of single or multiple bonded restorations at increased vertical dimension of occlusion

Anders 11-10-31 18.07 Kommentar: AKJ-much better

Gunnar E Carlsson 12-12-12 16.16 Formaterat: Typsnitt:12 pt Gunnar E Carlsson 12-12-12 16.15 Borttagen: 50

(VDO) in anticipation of rapid re-establishment of full intercuspation being attained by the non-occluding teeth [128]. Thus it can be seen that, besides the traditional 'subtractive' approach of conventional rehabilitative methods, a shift towards greater conservatism through an 'additive' approach is underway in the form of direct and indirect resin composite restorations [130,131], as well as other materials. The result can be both esthetically and functionally very satisfactory (Figure 11). In older patients the same approach may well be used. In one study, a shorter life-span with both direct and indirect resin composite [132]. In other clinical reports, promising results were shown [133,134].

With modern ceramics, using an adhesive technique, similarly good results can be achieved (Fig 12). It seems possible that the all-too-frequent failures seen after traditional reconstructive efforts may be more controllable through a staged, reversible reconstructive approach that relies to a large extent on adhesive technology, e.g. bonded composite restorations [135]. Given the possibilities that such innovative approaches offer, it must be acknowledged that clinicians have provided, and continue to provide, rehabilitative strategies for managing their patients' worn dentitions that range traditionally from extensive prosthodontics to an increasing reliance on adhesive techniques. Since all restorations have a finite lifespan, it is necessary for the clinician to know that early diagnosis and preventive strategies should always be used in patients at risk so as to avoid the development of severe wear and the need for complicated, extensive rehabilitation.

Conclusions

Although it may be difficult to identify a single cause of tooth wear that may be seen

Anders 11-11-1 15.21 Kommentar: Does not match each other?! RO: Oops!

Ridwaan Omar 11-10-31 19.42 **Kommentar:** Is what I added correct? AJ: No, but have corrected

Anders 11-10-31 19.44 **Kommentar:** GEC: Where is the text referring to refs 135–146 or 147? AJ: In the tables only...OK? Anders 11-11-1 15.23 **Kommentar:** ? RO: OK now?

clinically, dental erosion is increasingly and more consistently recognized as an essential feature of the wear seen.

The interest in dental erosion has been steadily increasing since the mid-1990s. Dental erosion has a multifactorial background, with individual and lifestyle factors having great significance. Dental erosion is commonly seen in children and young people. The location of erosive lesions is typically on the palatal surfaces of maxillary anterior teeth and the occlusal surfaces of mandibular first molars. Erosion appears also to be a significant factor in the development of non-carious cervical lesions.

It is important for the oral healthcare team to recognize the early signs and symptoms of dental erosion, and to understand its pathogenesis. This is key to understanding what the focus of the management approach needs to be.

Preventive strategies are the essential first line in management, and will include lifestyle changes. To promote healthier behaviours in adolescents, their choices of lifestyle will often need further investigation and collaboration between different types of healthcare workers.

When restoration of erosive damage is indicated, it should preferably, and if clinically and technically possible, be based on principles of reversibility. Thus the technique used should be "additive" rather than "subtractive".

Notwithstanding the greater knowledge base that exists compared to about 15 years ago, there is still a need for further research and a better understanding of dental _ erosion, be it of the process itself and its causation, or the most appropriate ways to deal with its consequences.

Anders 11-11-1 15.26 Kommentar: AKJ- maybe ... just above 15 years RO: done

 Table 1. Prevalence of dental erosion, according to studies from different countries.

 Prevalences, as listed, refer to erosion that reaches to the dentin or deeper.

Country	Age	No. of	Prevalence	Author(s)
	(yr)	individuals	(%)	& publication-yr
<u>Children</u>				
United Kingdom	4-5	178	30	Millward et al. 1994 [136]
United Kingdom	5	>1000	24	Downer 1995 [100]
United Kingdom	1.5-4.,5	1658	8	Moynihan & Holt 1996 [137]
Saudi Arabia	5-6	354	34	Al-Majed et al.2002 [138]
Ireland	5	202	21	Harding et al. 2003 [139]
India	5-6	100	30	Deshpande et al. 2005 [140]
China	3-5	1949	1	Luo et al. 2005 [106]
Germany	2-7	463	13	Wiegand et al. 2006 [141]
Sweden	5-6	135	13	Hasselkvist et al. 2010 (66)
Adolescents				
United Kingdom	14	1035	30	Milosevic et al. 1994 [103]
United Kingdom	15	>1000	2	Downer 1995 [100]
Saudi Arabia	20	95	16	Johansson et al. 1996 [17]
Cuba	12	1010	17	Kunzel et al. 2000 [142]
Saudi Arabia	12-14	862	26	Al-Majed et al. 2002 [138]
Iceland	15	278	6	Arnadottir et al. 2003 [143]
United Kingdom	14	1308	13	Dugmore et al. 2003 [7]
United Kingdom	14	2351	53	Bardsley et al. 2004 [144]
Turkey	11	153	28	Caglar et al. 2005 [145]
Brazil	12	389	2	Correr et al. 2009 [146]
Netherlands	15	622	24	El Aidi et al. 2010 [8]
Iceland	12	757	1	Arnadottir et al. 2010 [147]
Iceland	15	750	6	Arnadottir et al. 2010 [147]

Sweden	13-14	227	12	Hasselkvist et al. 2010 [66]
Sweden	18-19	247	22	Hasselkvist et al. 2010 [66]
<u>Adults</u>				
Switzerland	197	26-30	11	Lussi et al. 1991 [148]
Switzerland	194	46-50	19	Lussi et al. 1991[148]
United Kingdom	1010	22	77	Daly et al. 2011 [35]

 Table 2. Ordinal scale used for grading severity of dental erosion on buccal and lingual

 surfaces of maxillary anterior teeth (17).

Grade	Criteria
0	No visible changes, developmental structures remain, macro-morphology
	intact.
1	Smoothened enamel, developmental structures have totally or partially
	vanished. Enamel surface is shiny, matt, irregular, "melted", rounded or flat,
	macro-morphology generally intact.
2	Enamel surface as described in grade 1. Macro-morphology clearly changed,
	facetting or concavity formation within the enamel, no dentinal exposure. Gunnar E Carlsson 11-10-31 15.53 Kommentar: Eng. Or Am Eng?
3	Enamel surface as described in grades 1 and 2. Macro-morphology greatly
	changed (close to dentinal exposure of large surfaces) or dentin surface
	exposed by $\leq 1/3$.
4	Enamel surface as described in grades 1, 2 and 3. Dentin surface exposed by
	>1/3 or pulp visible through the dentin.

Table 3. Ordinal scale used for grading cuppings on occlusal surfaces of first

permanent molars and primary molars (66).

Grade	Criteria
0	No cupping/intact cusp tip
1	Rounded cusp tip
2	Cupping $\leq 1 \text{ mm}$
3	Cupping > 1 mm
4	Fused cuppings: at least two cuppings are fused together on the same tooth

Figure legends

Figure 1.

Extensive tooth wear of maxillary teeth in a medieval man estimated to be 35 to 45 years old. The loss of the first right molar was most likely caused by wear penetrating into the pulp subsequently leading to an inflammatory process in the periapical jawbone. (By courtesy of Dr. M. Wretemark, editor of S:t Per i Skara, a book on excavations of a medieval graveyard in the Swedish town of Skara, published in Swedish 2010; photograph taken by L.G. Olsson).

Figure 2.

Severe tooth wear on the mandibular first molars in an approximately 20 year-old individual from the 16th century (third molars are impacted). Looking carefully, NCCLs can be seen indicating either abrasive or erosive influences, which, in combination with the wear seen on the first molars, resembles the pattern seen in modern erosive wear

Figure 3.

- a) 6 year-old boy with dental erosion associated with a high intake of soft drinks and juice. Note the "melted" appearance of the buccal surfaces on teeth no. 51-61.
- b) Palatally on the maxillary front teeth the pulp is visible through the remaining tooth substance

Published with permission from the Journal of the Swedish Dental Journal

Figure 4.

12 year-old boy who has a high intake of cola dinks

- a) Note the severe damage with shoulder formations palatally on maxillary front teeth
- b) First molars also exhibit pronounced wear

Published with permission from the Journal of the Swedish Dental Journal

Figure 5.

40 year-old woman who had suffered from Bulimia Nervosa since she was a teenager. Frequent vomiting followed by intense and meticulous toothbrushing in combination with a high intake of light cola-type soft drinks have resulted in severe erosive tooth wear. A number of "raised" amalgam fillings have developed resulting in an unstable occlusion. At the time that these photographs were taken, she had for a long time been free of her eating disorder but suffers a lot from tooth sensitivity. Published with permission from the Journal of the Swedish Dental Journal

Figure 6.

40 year-old woman with inoperable hiatus hernia, and despite long-term anti-reflux medication developed severe damage on her posterior teeth. Note the relatively intact amalgam fillings "raised" above the eroded occlusal surfaces.

Figure 7.

Very severe erosive damage in a intellectually disabled17 year-old boy with a habit of frequent rumination. In addition to rumination he also suffers from GERD.

Ridwaan Omar 11-10-31 20.02 Kommentar: Clarify...AJ. I think Gunnar can...

Gunnar E Carlsson 11-10-31 15.53 Kommentar: I think it is polite to give the reference to the paper also Ridwaan Omar 11-10-31 15.53 Kommentar: I think the convention is like this: 20 year-old (one hyphen) Ridwaan Omar 11-10-31 15.53 Kommentar: Spell out in full?

Published with permission from the Journal of the Swedish Dental Journal

Figure 8.

- 13 year-old girl who has a high intake of soft drinks
 - a) Buccal erosion and crown shortening of the maxillary front teeth. Note the typical "inverted V-sign" often seen in cases of soft drink induced dental erosion. Mandibular incisors are relatively intact
 - b) Severe erosive damage, with shoulder formation on the palatal surfaces of maxillary anterior teeth

Published with permission from the Journal of the Swedish Dental Journal

Figure 9.

Examples of "cupping" of different severities in 3 individuals

- a) Cuppings of lesser extent on 36 mesio-buccal cusp in a 20 year-old man who has high intake of cola drinks
- b) Cuppings on 36 in a 22 year-old man with congenital agenesis of salivary glands
- c) Fused cuppings on teeth no. 84 and 85 in a 5 year-old boy

Figure 10.

Erosion in the primary dentition in a 6 year-old girl who has high intake of juice, fruit drink, cola and fruit

- a) Shortening of the crown height on teeth no. 51-61 as a consequence of dental erosion
- b) Note that the pulp is visible through the remaining tooth substance of teeth no. 51-61 palatally.

Published with permission from the Journal of the Swedish Dental Journal

Figure 11.

- a) 15 year-old girl with dental erosion confined mainly to maxillary anterior teeth caused by excessive soft drink consumption
- b) Substantial loss of toot substance palatally on teeth no. 12-22 with shoulder formation.
- c) Vertical dimension established by composite restoration on 12 allowing adequate space for restorative material.
- d) Coverage with composite on teeth no. 13-23
- e) Just after placement of composite. Note the non-occluding posterior teeth
- f) After a short period of time, reestablishment of the posterior occlusion utilizing the Dahl principle.

Figure 12. (from Au textbook)

19 year-old man with extensive tooth wear affecting maxillary anterior teeth caused by excessive soft drink intake, drunk by the "retaining" drinking technique (a-c). Note the pronounced wear on palatal and buccal surfaces with shoulder formations (b). Patient is provided with palatal acrylic onlays *ad modum* Dahl (cemented with resin cement) producing posterior disclusion (d, e). After 4 months the posterior occlusal relationship has normalized (f) and after preparation there is enough space for the restorations (g). Full ceramic Empress

crowns cemented on teeth no. 14-24 (h-j). (By courtesy to Dr. Fredrik Blomqvist, Postgraduate Dental education Center, Örebro, Sweden). Published with permission from the AU book

References

M. Ayad, B. C. Van Wuyckhuyse, K. Minaguchi et al., "The association of basic proline-rich peptides fromhuman parotid gland secretions with caries experience," *Journal of Dental Research*, vol. 79, no. 4, pp. 976–982, 2000.

- A. Johansson, "A cross-cultural study of occlusal tooth wear," *Swedish Dental Journal* Supplement 86: pp. 1-59, 1992.
- AK. Johansson, "On dental erosion and associated factors," Swedish Dental Journal, Supplement 156, pp. 1-77, 2002.
- S. Eliasson and S. Richter, "Tooth wear in Medieval Icelanders," The XXth. Nordic Medical Congress, Program Abstracts, p. 49, Abstract. no. 32, 2005.
- N. D. Robb, E. Cruwys, and B. G. Smith, "Regurgitation erosion as a possible cause of tooth wear in ancient British populations," *Archives of Oral Biology*, vol. 36, no.8, pp. 595-602, 1991.
- J. A. Kaidonis, "Tooth wear: the view of the anthropologist," *Clinical Oral Investigations*, vol. 2 Supplement 1: S21-6, 2008.
- C. Ganss, J. Klimek, and K. Giese, "Dental erosion in children and adolescents-a crosssectional and longitudinal investigation using study models," *Community Dentistry and Oral Epidemiology*, vol. 29, no. 4, 264-271, 2001.
- C. R. Dugmore and W. P. Rock, "The progression of tooth erosion in a cohort of adolescents of mixed ethnicity," *International Journal of Paediatric Dentistry*, vol. 13, no. 5, pp. 295-303, 2003.
- H. El Aidi, E. M. Bronkhorst, M. C. Huysmans, and G. J. Truin, "Dynamics of tooth erosion in adolescents: a 3-year longitudinal study. *Journal of Dentistry*, vol. 38, no. 2, pp. 131-137, 2010.
- 9. J. M. ten Cate and T. Imfeld, "Dental erosion, summary," European Journal of

32

ders 11-10-31 15.53

Kommentar: It should look like this: M. Ayad, B. C. Van Wuyckhuyse, K. Minaguchi et al., "The association of basic proline-rich peptides fromhuman parotid gland secretions with caries experience," Journal of Dental Research, vol. 79, no. 4, pp. 976–982, 2000. Oral Sciences, vol. 104, no. 2(Pt 2), pp. 241-244, 1996.

- AK. Johansson, A. Johansson A, V. Stan, and C. G. Ohlson, "Silicone sealers, acetic acid vapours and dental erosion: a work-related risk?," *Swedish Dental Journal*, vol. 29, no. 2, pp. 61-69, 2005.
- W. M. Amin, S. A. Al-Omoush, and F. N. Hattab, "Oral health status of workers exposed to acid fumes in phosphate and battery industries in Jordan," *International Dental Journal*, vol. 51, no. 3, pp. 169-174, 2001.
- M. L Tuominen, R. J. Tuominen, F. Fubusa, and N. Mgalula, "Tooth surface loss and exposure to organic and inorganic acid fumes in workplace air," *Community Dentistry and Oral Epidemiology*, vol. 19, no. 4, pp. 217-20, 991.
- A. Mulic, A. B Tveit, L. H. Hove, and A. B. Skaare, "Dental erosive wear among Norwegian wine tasters," *Acta Odontologica Scandinavica*, vol. 69, no. 1, pp. 21-26, 2010.
- H. D. Kim, Y.C. Hong, D. H. Koh, and D. I. Paik, "Occupational exposure to acidic chemicals and occupational dental erosion," *Journal of Public Health Dentistry*, vol. 66, no. 3, pp. 205-208, 2010.
- A. Wiegand and T. Attin, "Occupational dental erosion from exposure to acids: a review," *Occupational Medicine (Oxford, England)*, vol. 57, no. 3, pp. 169-176, 2007.
- M. F Jacobson, "Liquid candy: how soft drinks are harming Americans' health.
 2005," Available at: http://www.cspinet.org/new/pdf/liquid_candy_final_w_new_supplement.pdf
- 17. AK. Johansson, A. Johansson, D. Birkhed, R. Omar, S. Baghdadi, and G. E.

Carlsson, "Dental erosion, soft-drink intake, and oral health in young Saudi men, and the development of a system for assessing erosive anterior tooth wear," *Acta Odontologica Scandinavica*, vol. 54, no. 6, pp. 369-378, 1996.

- AK. Johansson, A. Johansson, D. Birkhed, R. Omar, S. Baghdadi, N. Khan, and G.E. Carlsson, "Dental erosion associated with soft-drink consumption in young Saudi men," *Acta Odontologica Scandinavica*, vol. 55, no. 5, pp. 390-397, 1997.
- T. Jensdottir, I. B. Arnadottir, I. Thorsdottir, A. Bardow, K. Gudmundsson, A. Theodors, and W. P. Holbrook, "Relationship between dental erosion, soft drink consumption, and gastroesophageal reflux among Icelanders," *Clinical Oral Investigations*, vol. 8, no. 2, pp. 91-96, 2004.
- C. Murakami, L. B. Oliveira, A. Sheiham, M. S. Nahás Pires Corrêa, A. E. Haddad, and M. Bönecker, "Risk indicators for erosive tooth wear in Brazilian preschool children," *Caries Research*, vol. 45, no. 2, pp. 121-129, 2011.
- R. Öhrn, K. Enzell, and B. Angmar-Månsson, "Oral status of 81 subjects with eating disorders," *European Journal of Oral Sciences*, vol. 107, no. 3, pp. 157-163, 1999.
- D. W. Bartlett, D. F. Evans, A. Anggiansah, and B. G. Smith, "A study of the association between gastro-oesophageal reflux and palatal dental erosion," *British Dental Journal*, vol. 181, no. 4, pp. 125-131, 1996.
- G. R. Wang, H. Zhang, Z. G. Wang, G. S. Jiang, and C. H. Guo, "Relationship between dental erosion and respiratory symptoms in patients with gastrooesophageal reflux disease," *Journal of Dentistry*, vol. 38, no. 11, pp. 892-898. 2010.

- AK. Johansson, C. Norring, L. Unell, and A. Johansson, "Eating disorders and oral health: A matched case-control study," *European Journal of Oral Sciences*, Accepted for publication.
- N. Schlueter, M. Hardt, J. Klimek, and C. Ganss, "Influence of the digestive enzymes trypsin and pepsin in vitro on the progression of erosion in dentine," *Archives of Oral Biology*, vol. 55, no. 4, pp. 294-299, 2010.
- 26. S. Ranjitkar, J.A. Kaidonis, and R. J. Smales, "Gastroesphageal reflux disease and tooth erosion," *International Journal of Dentistry*, in press (this issue), 2011.
- D. Bartlett, "Intrinsic causes of erosion," *Monographs in Oral Science*, vol. 20, pp. 119-139, 200.
- 28. W. G. Young, "The oral medicine of tooth wear," *Australian Dental Journal*, vol. 46, no. 4, pp. 236-250, 2001.
- W. Young, F. Khan, R. Brandt, N. Savage, A. A. Razek, and Q. Huang,
 "Syndromes with salivary dysfunction predispose to tooth wear: Case reports of congenital dysfunction of major salivary glands, Prader-Willi, congenital rubella, and Sjögren's syndromes," *Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics*, vol. 92, no. 1, pp. 38-48, 2001.
- G. K. Gonçalves, F. G. Carmagnani, M. S. Corrêa, D. A. Duarte, and M. T. Santos, "Dental erosion in cerebral palsy patients," *Journal of Dentistry for Children (Chicago, Ill.)*, vol. 75, no. 2, pp 117-120, 2008.
- J. M. Su, A. Tsamtsouris, and M. Laskou, "Gastroesophageal reflux in children with cerebral palsy and its relationship to erosion of primary and permanent teeth," *Journal of the Massachusetts Dental Society*, vol. 52, no. 2, pp. 20-24,

2003.

- F. Khan F and W. G. Young (editors), *Tooth Wear. The ABC of the worn dentition*, Chichester, UK: Wiley-Blackwell, 2011.
- J. J. Pindborg, *Pathology of dental hard tissues*, Köpenhamn, Munksgaard, pp. 312-321, 1970.
- M. J. Larsen and C. Bruun, *Caries chemistry and fluoride-mechanisms of action*, In: A. Thylstrup and O. Fejerskov (editors), Textbook of clinical cariology. 2nd ed. Copenhagen: Munksgaard, pp. 231-257, 1994.
- B. Daly, J. T. Newton, J. Fares, K. Chiu, N. Ahmad, S. Shirodaria, and D. Bartlett, "Dental tooth surface loss and quality of life in university students," *Primary Dental Care*, vol., no. 1, pp. 18:31-5, 2011.
- F. Mannerberg, "Saliva factors in cases of erosion," *Odontologisk Revy*, vol. 14, pp. 156-166, 1963.
- B. G. Smith and J. K. Knight, "An index for measuring the wear of teeth," *British Dental Journal*, vol. 156, no. 12, pp. 435-438, 1984.
- H. El Aidi, E. M. Bronkhorst, and G. J. Truin, "A longitudinal study of tooth erosion in adolescents," *Journal of Dental Research*, vol. 87, no. 8, pp. 731-735, 2008.
- F. Khan, W.G. Young, V. Law, J. Priest, and T. J. Daley, "Cupped lesions of early onset dental erosion in young southeast Queensland adults," *Australian Dental Journal*, vol. 46, no. 2, pp. 100-107, 2001.
- N. K. Kerr, "Dental pain and suffering prior to the advent of modern dentistry," *British Dental Journal*, vol. 184, no. 8, pp. 397-399, 1998.

- S. Helm and U. Prydsö, "Assessment of age-at-death from mandibular molar attrition in medieval Danes," *Scandinavian Journal of Dental Research*, vol. 87, no. 2, pp. 79-90, 1979
- A. Johansson, T. Haraldson, R. Omar, S. Kiliaridis, and G. E. Carlsson, "A system for assessing the severity and progression of occlusal tooth wear," *Journal of Oral Rehabilitation*, vol. 20, no. 2, pp. 125-131, 1993.
- AK. Johansson, P. Lingström, and D. Birkhed, "Comparison of factors potentially related to the occurrence of dental erosion in high- and low-erosion groups," *European Journal of Oral Sciences*, vol. 110, no. 3, pp. 204-211, 2002.
- G. E. Carlsson and B. Ingervall, *Occlusal variations and problems*, In: Mohl N,
 G. Zarb, G. E. Carlsson, J.D. Rugh (editors), A textbook of occlusion. London: Quintessence, pp. 209-212, 1988.
- W. D. Miller, "Experiments and observations on the wasting of tooth tissue variously designed as erosion, abrasion, chemical abrasion, denudation etc.," *Dental Cosmos*, vol. 49, pp. 225-247, 1907.
- 46. B. G. Smith and N. D. Robb, "The prevalence of tooth wear in 1007 dental patients," *Journal of Oral Rehabilitation*, vol. 23, no. 4, pp. 232-239, 1996.
- B. G. Smith, D. W. Bartlett, and N. D. Robb, "The Prevalence, etiology and management of tooth wear in the United Kingdom," *The Journal of Prosthetic Dentistry*, vol. 78, no. 4, pp. 367-372, 1997.
- W. G. Young and C. Dawes, *Dental diagnosis and the oral medicine of tooth wear*, In: F. Khan, W. G. Young (editors), Tooth Wear. The ABC of the worn dentition, Chichester, UK, Wiley-Blackwell, pp. 89–110, 2011.

- F. Khan, W. G. Young, and T. J. Daley, "Dental erosion and bruxism. A tooth wear analysis from South east Queensland," *Australian Dental Journal*, vol. 43, no. 2, pp. 117-127, 1998.
- 50. A. Johansson, AK. Johansson, R. Omar, and G. E. Carlsson, "Rehabilitation of the worn dentition," *Journal of Oral Rehabilitation*, vol. 35, no. 7, pp. 548-566, 2008.
- A. Johansson, R. Omar, and G. E. Carlsson, "Bruxism and prosthetic treatment: a critical review," *Journal of Prosthodontic Research*, vol. 55, no. 3, pp. 127-136, 2011.
- J. Bevenius, S. Lindskog, and K. Hultenby, "The micromorphology in vivo of the buccocervical region of premolar teeth in young adults. A replica study by scanning electron microscopy," *Acta Odontologica Scandinavica*, vol. 52, no. 6, pp. 323-334, 1994.
- M. Braem, P. Lambrechts, and G. Vanherle, "Stress-induced cervical lesions," *The Journal of Prosthetic Dentistry*, vol. 67, no. 5, pp. 718-722, 1992.
- B. Faye, A. W. Kane AW, M. Sarr, C. Lo, A. V. Ritter AV, and J. O. Grippo, "Noncarious cervical lesions among a non-toothbrushing population with Hansen's disease (leprosy): initial findings," *Quintessence International*, vol. 37, no. 8, pp. 613-619, 2006.
- S. A. McEvoy, R. J. Mitchell, and M. L. Powell, "Wedge-shaped cervical dental lesions in two prehistoric Native American populations," *American Journal of Physical Anthropology*, Suppl 22, p. 162, 1996.
- 56. R. W. Ott and P. Pröschel, "Zur Ätiologie des keilförmigen defektes. Ein funktionsorientierter epidemiologischer und experimenteller beitrag," *Deutsche*

Zahnärztliche Zeitschrift, vol. 40, no. 12, pp. 1223-1227, 1985.

- F. J. Burke, N. Johnston, R. B. Wiggs, and A. F. Hall, "An alternative hypothesis from veterinary science for the pathogenesis of noncarious cervical lesions," *Quintessence International*, vol. 31, no. 7, pp. 475-482, 2000.
- F. Khan, W. G. Young, S. Shahabi, and T. J. Daley, "Dental cervical lesions associated with occlusal erosion and attrition," *Australian Dental Journal*, vol. 44, no. 3, pp. 176-186, 1999.
- J. Bevenius, P. L'Estrange, S. Karlsson, and G. E. Carlsson, "Idiopathic cervical lesions: in vivo investigation by oral microendoscopy and scanning electron microscopy. A pilot study," *Journal of Oral Rehabilitation*, vol. 20, no. 1, pp. 1-9, 1993.
- J. O. Grippo, M. Simring, and S. Schreiner, "Attrition, abrasion, corrosion and abfraction revisited: a new perspective on tooth surface lesions," *The Journal of the American Dental Association*, vol. 135, no. 8, pp. 1109-1118, quiz pp. 1163-1165, 2004.
- D. W. Bartlett and P. Shah, "A critical review of non-carious cervical (wear) lesions and the role of abfraction, erosion, and abrasion," *Journal of Dental Research*, vol. 85, no. 4, pp. 306-312, 2006.
- M. Addy, "Tooth brushing, tooth wear and dentine hypersensitivity--are they associated?," *International Dental Journal*, vol. 55, no. 4 Suppl 1, pp. 261-267, 2005.
- O. Bernhardt, D. Gesch, C. Schwahn, F. Mack, G. Meyer, U. John, and T. Kocher,
 "Epidemiological evaluation of the multifactorial aetiology of abfractions,"

Journal of Oral Rehabilitation, vol. 33, no. 1, pp. 17-25, 2006.

- 64. W. A. Smith, S. Marchan, and R. N. Rafeek, "The prevalence and severity of noncarious cervical lesions in a group of patients attending a university hospital in Trinidad," *Journal of Oral Rehabilitation*, vol. ;35, no. 2, pp. 128-134, 2008.
- T. Attin, "Methods for assessment of dental erosion," *Monographs in Oral Science*, vol. 20, pp. 152-172, 2006.
- A. Hasselkvist, A. Johansson, AK. Johansson, "Dental erosion and soft drink consumption in Swedish children and adolescents and the development of a simplified erosion partial recording system," *Swedish Dental Journal*, vol. 34, no. 4, pp. 187-195, 2010.
- W. P. Holbrook and C. Ganss, "Is diagnosing exposed dentine a suitable tool for grading erosive loss?," *Clinical Oral Investigations*, vol. 12, Suppl 1:S33-9, 2008.
- J. H. Nunn, "Prevalence of dental erosion and the implications for oral health," *European Journal of Oral Sciences*, vol. 104, no. 2, Pt2, pp. 156-161, 1996.
- J. H. Nunn, P. H. Gordon, A. J. Morris, C.M. Pine, and A. Walker, "Dental erosion -- changing prevalence? A review of British National childrens' surveys," *International Journal of Paediatric Dentistry*, vol. 13, no. 2, pp. 98-105, 2003.
- AK. Johansson, R. Sorvari, D. Birkhed, and J.H. Meurman, "Dental erosion in deciduous teeth - an in vivo and in vitro study," *Journal of Dentistry*, vol. 29, no. 5, pp. 333-340, 2001.
- B. T. Amaechi, S. M. Higham, and W. M. Edgar, "Factors influencing the development of dental erosion in vitro: enamel type, temperature and exposure time," *Journal of Oral Rehabilitation*, vol. 26, no. 8, pp. 624-630, 1999.

- A. Lussi, N. Kohler, D. Zero, M. Schaffner, and B. Megert, "A comparison of the erosive potential of different beverages in primary and permanent teeth using an in vitro model," *European Journal of Oral Sciences*, vol. 108, no. 2, pp. 110-114, 2000.
- G. M. Correr, R.C. Alonso, S. Consani, R. M. Puppin-Rontani, and J. L. Ferracane, "In vitro wear of primary and permanent enamel. Simultaneous erosion and abrasion," *American Journal of Dentistry*, vol. 20, no. 6, pp. 394-399, 2007.
- 74. V. K. Järvinen, I. I. Rytomaa, and P. O. Heinonen, "Risk factors in dental erosion," *Journal of Dental Research*, vol. 70, no. 6, pp. 942-947, 1991.
- E. A. O'Sullivan and M. E. Curzon, "Salivary factors affecting dental erosion in children," *Caries Research*, vol. 34, no. 1, pp. 82-87, 2000.
- 76. J Tenovuo, "Salivary parameters of relevance for assessing caries activity in individuals and populations," *Community Dentistry and Oral Epidemiology*, vol. 25, no. 1, pp. 82-86, 1997.
- C. G. Crossner, "Salivary flow rate in children and adolescents," *Swedish Dental Journal*, vol. 8, no. 6, pp. 271-276, 1984.
- J. H. Meurman and R. M. Frank, "Scanning electron microscopic study of the effect of salivary pellicle on enamel erosion," *Caries Research*, vol. 25, no. 1, pp. 1-6, 1991.
- B. T. Amaechi, S. M. Higham, W. M. Edgar, and A. Milosevic, "Thickness of acquired salivary pellicle as a determinant of the sites of dental erosion," *Journal* of *Dental Research*, vol. 78, no. 12, pp. 1821-1828, 1999.
- 80. A. T. Hara, M. Ando, C. Gonzalez-Cabezas, J. A. Cury, M.C. Serra, D. T. Zero,

"Protective effect of the dental pellicle against erosive challenges in situ," *Journal* of Dental Research, vol. 85, no. 7, pp. 612-616, 2006.

- Z. Cheaib and A. Lussi, "Impact of acquired enamel pellicle modification on initial dental erosion," *Caries Research*, vol. 45, no. 2, pp. 107-112, 2011.
- T. Piangprach, C. Hengtrakool, B. Kukiattrakoon, and U. Kedjarune-Leggat, "The effect of salivary factors on dental erosion in various age groups and tooth surfaces," *The Journal of the American Dental Association*, vol. 140, no. 9, pp. 1137-1143, 2009.
- AK. Johansson, P. Lingström, T. Imfeld, and D. Birkhed, "Influence of drinking method on tooth surface- pH in relation to dental erosion," *European Journal of Oral Sciences*, vol. 112, no. 6, pp. 484-489, 2004.
- 84. C. A. Hemingway, D. M. Parker, M. Addy, and M. E. Barbour, "Erosion of enamel by non-carbonated soft drinks with and without toothbrushing abrasion," *British Dental Journal*, vol. 201, no. 7, pp. 447-450, 2006; discussion p. 439; quiz p. 466.
- T. Jaeggi and A. Lussi, "Toothbrush abrasion of erosively altered enamel after intraoral exposure to saliva: an in situ study," *Caries Research*, vol. 33, no. 6, pp. 455-461, 1999.
- N. M. Nuttall, J. G. Steele, C. M. Pine, D. White, and N.B, Pitts, "The impact of oral health on people in the UK in 1998," *British Dental Journal*, vol. 190, no. 3, pp. 121-126, 2001.
- T. Österberg, G. E. Carlsson, and V. Sundh, "Trends and prognoses of dental status in the Swedish population: analysis based on interviews in 1975 to 1997 by

Statistics Sweden," *Acta Odontologica Scandinavica*, vol. 58, no. 4, pp. 177-182, 2000.

- J. Nunn, J. Morris, C. Pine, N. B. Pitts, G. Bradnock, and J. Steele, "The condition of teeth in the UK in 1998 and implications for the future," *British Dental Journal*, vol. 189, no. 12, pp. 639-644, 2000.
- L. Harnack, J. Stang, and M. Story, "Soft drink consumption among US children and adolescents: nutritional consequences," *Journal of the American Dietetic Association*, vol. 99, no. 4, pp. 436-441, 1999.
- 90. L. B. Messer and W. G. Young, *Childhood diet and dental erosion*, In: F. Khan,
 W. G. Young (editors), Tooth Wear. The ABC of the worn dentition. Chichester,
 UK: Wiley-Blackwell, pp. 34–49, 2011.
- E. Linkosalo, P. Halonen, and H. Markkanen, "Factors related to dental health and some salivary factors in Finnish Seventh-Day Adventists," *Proceedings of the Finnish Dental Society*, vol. 84, no. 5-6, pp. 279-289, 1988.
- J. Phelan and J. Rees, "The erosive potential of some herbal teas," *Journal of Dentistry*, vol. 31, no. 4, pp. 241-246, 2003.
- P. A. Brunton and A. Hussain, "The erosive effect of herbal tea on dental enamel," *Journal of Dentistry*, vol. 29, no. 8, pp. 517-520, 2001.
- A. Milosevic, "Sports drinks hazard to teeth," *British Journal of Sports Medicine*, vol. 31, no. 1, pp. 28-30, 1997.
- D. Moore and M. A. Wilson, "Dental erosion: a case study of a marathon runner," *Dental Update*, vol. 28, no. 1, pp. 25-28, 2001.
- 96. J. H. Meurman, J. Toskala J, P. Nuutinen, and E. Klemetti, "Oral and dental

manifestations in gastroesophageal reflux disease," *Oral surgery, Oral Medicine, and Oral Pathology*, vol. 78, no. 5, pp. 583-589, 1994.

- J. H. Meurman and M. Vesterinen, "Wine, alcohol, and oral health, with special emphasis on dental erosion," *Quintessence International*, vol. 31, no. 10, pp. 729-733, 2000.
- A. Milosevic, N. Agrawal, P. Redfearn, and L. Mair, "The occurrence of tooth wear in users of Ecstasy (3,4-methylenedioxymethamphetamine)," *Community Dentistry and Oral Epidemiology*, vol. 27, no. 4, pp. 283-287, 1999.
- M. McCracken and S. J. O'Neal, "Dental erosion and aspirin headache powders: a clinical report," *Journal of Prosthodontics*, vol. 9, no. 2, pp. 95-98, 2000.
- M. C. Downer, "The 1993 national survey of children's dental health," *British Dental Journal*, vol. 178, no. 11, pp. 407-412, 1995.
- 101. Y. H. Al-Dlaigan, L. Shaw, and A. Smith, "Dental erosion in a group of British 14-year-old, school children. Part I: Prevalence and influence of differing socioeconomic backgrounds," *British Dental Journal*, vol. 190, no. 3, pp. 145-149, 2001.
- 102. M. I. Al-Malik, R. D. Holt, and R. Bedi, "Erosion, caries and rampant caries in preschool children in Jeddah, Saudi Arabia," *Community Dentistry and Oral Epidemiology*, vol. 30, no. 1, pp. 16-23, 2002.
- A. Milosevic, P. J. Young, and M. A. Lennon, "The prevalence of tooth wear in 14-year-old school children in Liverpool," *Community Dent Health*, vol. 11, no. 2, pp. 83-86, 1994.
- 104. L. Shaw, Y. H. al-Dlaigan, and A. Smith, "Childhood asthma and dental erosion,"

ASDC Journal of Dentistry for Children, vol. 67, no. 2, pp. 102-106, 82, 2000.

- 105. P. Wang, H. C. Lin, J. H. Chen, and H. Y. Liang, "The prevalence of dental erosion and associated risk factors in 12-13-year-old school children in Southern China," *BMC Public Health*, vol. 10, p. 478, 2010.
- Y. Luo, X. J. Zeng, M. Q. Du, and R. Bedi, "The prevalence of dental erosion in preschool children in China," *Journal of Dentistry*, vol. 33, no. 2, pp. 115-121, 2005.
- 107. D. Bartlett, C. Ganss, and A. Lussi, "Basic Erosive Wear Examination (BEWE): a new scoring system for scientific and clinical needs," *Clinical Oral Investigations*, vol. 12, Suppl 1:S65-8, 2008.
- 108. A. Milosevic, "The problem with an epidemiological index for dental erosion," *British Dental Journal*, vol. 211, no. 5, pp. 201-203, 2011.
- B. T. Amaechi and S. M. Higham, "In vitro remineralisation of eroded enamel lesions by saliva," *Journal of Dentistry*, vol. 29, no. 5, pp. 371-376, 2001.
- M. J. Larsen and A. Richards, "Fluoride is unable to reduce dental erosion from soft drinks," *Caries Research*, vol. 36, no. 1, pp. 75-80, 2002.
- 111. R. Sorvari, J. H. Meurman, P. Alakuijala P, and R. M. Frank, "Effect of fluoride varnish and solution on enamel erosion in vitro," *Caries Research*, vol. 28, no. 4, pp. 227-232, 1994.
- 112. C. Ganss, J. Klimek, U. Schaffer, and T. Spall, "Effectiveness of two fluoridation measures on erosion progression in human enamel and dentine in vitro," *Caries Research*, vol. 35, no. 5, pp. 325-330, 2001.
- 113. J. G. Saunders and J. M. McIntyre, "The ability of 1.23% acidulated phosphate

fluoride gel to inhibit simulated endogenous erosion in tooth roots," *Australian Dental Journal*, vol. 50, no. 4, pp. 263-266, 2005.

- 114. L. Hove, B. Holme, B. Ogaard, T. Willumsen T, and A. B. Tveit, "The protective effect of TiF4, SnF2 and NaF on erosion of enamel by hydrochloric acid in vitro measured by white light interferometry," *Caries Research*, vol. 40, no. 5, pp. 440-443, 2006.
- 115. A. Young, P. S. Thrane, E. Saxegaard, G. Jonski, and G. Rölla, "Effect of stannous fluoride toothpaste on erosion-like lesions: an in vivo study," *European Journal of Oral Sciences*, vol. 114, no. 3, pp. 180-183, 2006.
- 116. J. H. Meurman and J. M. ten Cate, "Pathogenesis and modifying factors of dental erosion," *European Journal of Oral Sciences*, vol. 104, no. 2, pp. 199-206, 1996.
- 117. J. H. Meurman, T. Kuittinen, M. Kangas, and T. Tuisku, "Buffering effect of antacids in the mouth--a new treatment of dental erosion?," *Scandinavian Journal* of Dental Research, vol. 96, no. 5, pp. 412-417, 1988.
- 118. B. Lindquist, P. Lingström, L. Fändriks, and D. Birkhed, "Influence of five neutralizing products on intra-oral pH after rinsing with simulated gastric acid," *European Journal of Oral Sciences*, vol. 119, no. 4, pp. 301-304, 2011.
- 119. D. C. Messias, C. P. Turssi, A. T. Hara, and M. C. Serra, "Sodium bicarbonate solution as an anti-erosive agent against simulated endogenous erosion," *European Journal of Oral Sciences*, vol. 118, no. 4, pp. 385-388, 2010.
- A. Lussi, "Dental erosion--novel remineralizing agents in prevention or repair," *Advances in Dental Research*, vol. 21, no. 1, pp. 13-16, 2009.
- 121. R. Gupta and V. Prakash, "CPP-ACP complex as a new adjunctive agent for

remineralisation: a review," *Oral Health & Preventive Dentistry*, vol. 9, no. 2, pp. 151-165, 2011.

- T. Jensdottir, B. Nauntofte, C. Buchwald, and A. Bardow, "Erosive potential of acidic candies in saliva and effects of calcium," *Caries Research*, vol. 41, no. 1, pp. 68-73, 2007.
- T. Jensdottir, A. Bardow, and P. Holbrook, "Properties and modification of soft drinks in relation to their erosive potential in vitro," *Journal of Dentistry*, vol. 33, no. 7, pp. 569-575, 2005.
- 124. R. Öhrn and B. Angmar-Månsson, "Oral status of 35 subjects with eating disorders--a 1-year study," *European Journal of Oral Sciences*, vol. 108, no. 4, pp. 275-280, 2000.
- B. L. Dahl, O. Krogstad, and K. Karlsen, "An alternative treatment in cases with advanced localized attrition," *Journal of Oral Rehabilitation*, vol. 2, no. 3, pp. 209-214, 1975.
- 126. M. B. Gough and D. J. Setchell, "A retrospective study of 50 treatments using an appliance to produce localised occlusal space by relative axial tooth movement," *British Dental Journal*, vol. 187, no. 3, pp. 34-139, 1999.
- 127. B. L. Dahl and O. Krogstad, "Long-term observations of an increased occlusal face height obtained by a combined orthodontic/prosthetic approach," *Journal of Oral Rehabilitation*, vol. 12, no. 2, pp. 173-176, 1985.
- 128. N. J. Poyser, R. W. Porter, P. F. Briggs, H. S. Chana, and M. G. Kelleher, "The Dahl Concept: past, present and future," *British Dental Journal*, vol. 198, no. 11, pp. 669-676, 2005.

- H. Chana, M. Kelleher, P. Briggs, and R. Hooper, "Clinical evaluation of resinbonded gold alloy veneers," *The Journal of Prosthetic Dentistry*, vol. 83, no. 3, pp. 294-300, 2000.
- 130. P. Briggs, K. Bishop, and M. Kelleher, "Case report: the use of indirect composite for the management of extensive erosion," *The European Journal of Prosthodontics and Restorative Dentistry*, vol. 3, no. 2, pp. 51-54, 1994.
- 131. K. H. Yip, R. J. Smales, and K. A. Kaidonis, "Case report: management of tooth tissue loss from intrinsic acid erosion," *The European Journal of Prosthodontics* and Restorative Dentistry, vol. 11, no. 3, pp. 101-106, 2003.
- 132. D. Bartlett and G. Sundaram, "An up to 3-year randomized clinical study comparing indirect and direct resin composites used to restore worn posterior teeth," *International Journal of Prosthodontics*, vol. 19, no. 6, pp. 613-617, 2006.
- 133. K. W. Hemmings, U. R. Darbar, and S. Vaughan, "Tooth wear treated with direct composite restorations at an increased vertical dimension: results at 30 months," *The Journal of Prosthetic Dentistry*, vol. 83, no. 3, pp. 287-293, 2000.
- 134. T. Attin, T. Filli, C. Imfeld, and P. R. Schmidlin, "Composite vertical bite reconstructions in eroded dentitions after 5•5 years: a case series," *Journal of Oral Rehabilitation*, Article first published online: DOI: 10.1111/j.1365-2842.2011.02240.x, 2011
- N. H. Creugers and A. van't Spijker, "Tooth wear and occlusion: friends or foes?," *International Journal of Prosthodontics*, vol. 20, no. 4, pp. 348-350, 2007.
- 136. A. Millward, L. Shaw, and A. Smith, "Dental erosion in four-year-old children from differing socioeconomic backgrounds," ASDC Journal of Dentistry for

Children, vol. 61, no. 4, pp. 263-266, 1994.

- 137. P. J. Moynihan and R.D Holt, "The national diet and nutrition survey of 1.5 to 4.5 year old children: summary of the findings of the dental survey," *British Dental Journal*, vol. 181, no. 9, pp. 328-332, 1996.
- 138. I. Al-Majed, A. Maguire, J. J. Murray, "Risk factors for dental erosion in 5-6 year old and 12-14 year old boys in Saudi Arabia," *Community Dentistry and Oral Epidemiology*, vol. 30, no. 1, pp. 38-46,2002.
- M. A. Harding, H. Whelton, D. M. O'Mullane, and M. Cronin, "Dental erosion in 5-year-old Irish school children and associated factors: a pilot study," *Community Dental Health*, vol. 20, no. 3, pp. 165-170, 2003.
- 140. S. D. Deshpande and S. M. Hugar, "Dental erosion in children: an increasing clinical problem," *Journal of the Indian Society of Pedodontics and Preventive Dentistry*, vol. 22, no. 3, pp. 118-127, 2004.
- Wiegand A, Muller J, Werner C, Attin T. Prevalence of erosive tooth wear and associated risk factors in 2-7-year-old German kindergarten children. Oral Dis 2006; 12: 117-24.
- 142. Kunzel W, Cruis MS, Fischer T. Dental erosion in Cuban children associated with excessive consumption of oranges. Eur J Oral Sci 2000; 108:104-9.
- 143. Arnadottir IB, Saemundsson SR, Holbrook WP. Dental erosion in Icelandic teenagers in relation to dietary and lifestyle factors. Acta Odontol Scand 2003; 61: 25-8.
- 144. Bardsley PF, Taylor S, Milosevic A. Epidemiological studies of tooth wear and dental erosion in 14-year-old children in North West England. Part 1: The

relationship with water fluoridation and social deprivation. Br Dent J 2004; 197: 413-6.

- 145. Caglar E, Kargul B, Tanboga I, Lussi A. Dental erosion among children in an Istanbul public school. J Dent Child (Chic) 2005; 72: 5-9.
- 146. Correr GM, Alonso RC, Correa MA, Campos EA, Baratto-Filho F, Puppin-Rontani RM. Influence of diet and salivary characteristics on the prevalence of dental erosion among 12-year-old schoolchildren. J Dent Child (Chic) 2009;76:181-7.
- 147. Arnadottir IB, Holbrook WP, Eggertsson H, Gudmundsdottir H, Jonsson SH, Gudlaugsson JO, Saemundsson SR, Eliasson ST, Agustsdottir H. Prevalence of dental erosion in children: a national survey. *Community Dentistry and Oral Epidemiology*, 2010;38:521-6.
- 148. Lussi A, Schaffner M, Hotz P, Suter P. Dental erosion in a population of Swiss adults. *Community Dentistry and Oral Epidemiology*, 1991;19:286-90.